fix report

This commit is contained in:
s450026 2020-05-26 22:06:13 +02:00
parent bb5b59fe48
commit e5cb3a8722

View File

@ -2,7 +2,9 @@
**Autor:** Maksymilian Kierski **Autor:** Maksymilian Kierski
**Raportowany okres:** 15.05.2020-26.05.2020 **Raportowany okres:** 15.05.2020-26.05.2020
**Wybrana metoda uczenia:** Splotowe sieci neuronowe (CNN) **Wybrana metoda uczenia:** Splotowe sieci neuronowe (CNN)
## Cel podprojektu ## Cel podprojektu
@ -128,9 +130,16 @@ model.add(Flatten())
model.add(Dense(1)) model.add(Dense(1))
model.add(Activation('sigmoid')) model.add(Activation('sigmoid'))
``` ```
Następnie zachodzi kompilacja modelu. Używam funkcję straty **binary_crosentropy** , ponieważ mierzymy się z problemem klasyfikacji binarnej. Problem klasyfikacji binarnej jest wtedy, gdy do rozpatrzenia mamy tylko dwa przypadki, w tym zadaniu talerz z jedzeniem(0) oraz bez jedzenia(1). Optymalizator, który użyłem jest to **adam**, a za pomocą **metrics** aktywuje monitorowanie dokładności.
Kilka słów o optymalizatorze **adam** - _Adam_, jest obecnie zalecany przy większości zadań optymalizacyjnych związanych z uczeniem, ponieważ łączy on zalety Adadelty i RMSprop, a zatem lepiej radzi sobie z większością problemów.
Na sam koniec wywołuję funkcję uczenia, oraz zapisuję model do wykorzystania go w projekcie głównym.
```
model.fit(X, y, batch_size=32, epochs=10, validation_split=0.1, callbacks=[tenserboard])
model.save(relative_path + 'SavedModels/{}.model'.format(NAME))
```
## Integracja z projektem ## Integracja z projektem
Podprojekt wywołujemy naciskając **m** na klawiaturze, kelner wtedy wybiera losowo stolik i do niego idzie zaimplementowanym wcześniej algorytmem A*. Po dotarciu do wybranego miejsca, możemy wywołać funkcje sprawdzającą talerz **use_model_to_predict('img')** Podprojekt wywołujemy naciskając **m** na klawiaturze, kelner wtedy wybiera losowo stolik i do niego idzie zaimplementowanym wcześniej algorytmem A*. Po dotarciu do wybranego miejsca, możemy wywołać funkcje sprawdzającą talerz **use_model_to_predict('img')**
@ -147,3 +156,4 @@ prediction = model.predict([prepare(relative_path + 'TestData/' + name + '.jpg')
return int(prediction[0][0]) return int(prediction[0][0])
``` ```
Funkcja ta konwertuję zdjęcie zadeklarowane do wylosowanego stolika oraz odpowiednio je konwertuję. Następnie ładuję zadeklarowany model przez nas model, który zwraca nam odpowiednią liczbę, która w int() daje 0 lub 1. Odpowiednio 0 to talerz pełny a 1 to pusty. Dzięki czemu funkcją **text_speech()** możemy wyświetlić odpowiednią informacje na ekranie. Funkcja ta konwertuję zdjęcie zadeklarowane do wylosowanego stolika oraz odpowiednio je konwertuję. Następnie ładuję zadeklarowany model przez nas model, który zwraca nam odpowiednią liczbę, która w int() daje 0 lub 1. Odpowiednio 0 to talerz pełny a 1 to pusty. Dzięki czemu funkcją **text_speech()** możemy wyświetlić odpowiednią informacje na ekranie.