2023-06-14 11:28:02 +02:00
|
|
|
tabPanel("Table", dataTableOutput('table'))
|
|
|
|
),
|
|
|
|
width = 9
|
|
|
|
),
|
|
|
|
fluid = TRUE
|
|
|
|
)
|
|
|
|
)
|
|
|
|
# Backend
|
|
|
|
server <- function(input, output, session) {
|
|
|
|
output$table <- renderDataTable({
|
|
|
|
merged_df[, !names(merged_df) %in% c("OBS_VALUE.x", "OBS_VALUE.y", "geometry")]
|
|
|
|
}, options = list(pageLength = 10))
|
|
|
|
# Plot module
|
|
|
|
output$final_plot <- renderPlotly({
|
|
|
|
final_plot <- ggplot(filter(merged_df, geo %in% input$countries),
|
|
|
|
aes(x = TIME_PERIOD, y = house_prices_wo_hicp, color = geo,
|
|
|
|
text = paste("Kraj: ", geo, "<br>", "Rok: ", TIME_PERIOD, "<br>",
|
|
|
|
"Cena nieruchomości: ", house_prices_wo_hicp))) +
|
|
|
|
geom_line(aes(group = geo), linetype = "dotted", size = 1) +
|
2023-05-21 15:57:28 +02:00
|
|
|
geom_point() +
|
2023-06-14 11:28:02 +02:00
|
|
|
geom_text(data = filter(merged_df, geo %in% input$countries) %>% group_by(geo) %>% slice(n()),
|
|
|
|
aes(label = "", hjust = -0.2, size = 4)) +
|
|
|
|
stat_function(fun = function(x) 100*(1+input$range[1]/100)^(x-2015), aes(colour = paste0(as.character(input$range[1]), "% Compounding")), inherit.aes = FALSE) +
|
|
|
|
stat_function(fun = function(x) 100*(1+input$range[2]/100)^(x-2015), aes(colour = paste0(as.character(input$range[2]), "% Compounding")), inherit.aes = FALSE) +
|
|
|
|
scale_x_continuous(breaks = seq(2010, 2024, 2)) +
|
|
|
|
labs(x = "Rok", y = "Indeks cen nieruchomości zdyskontowany o wartość inflacji [2015 = 100]",
|
|
|
|
color = "Countries") +
|
|
|
|
theme(axis.title = element_blank())
|
|
|
|
plotly_plot <- ggplotly(final_plot, tooltip = "text")
|
|
|
|
for (i in 1:length(plotly_plot$x$data)) {
|
|
|
|
if (plotly_plot$x$data[[i]]$name == paste0(as.character(input$range[1]), "% Compounding") || plotly_plot$x$data[[i]]$name == paste0(as.character(input$range[1]), "% Compounding")) {
|
|
|
|
plotly_plot$x$data[[i]]$hoverinfo <- "name+y"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
plotly_plot %>% layout(showlegend = TRUE, legend = list(title = list(text = "Countries")))
|
|
|
|
})
|
|
|
|
# Map module
|
|
|
|
output$mymap <- renderLeaflet({
|
|
|
|
leaflet() %>%
|
|
|
|
addProviderTiles(providers$CartoDB.Positron) %>%
|
|
|
|
addPolygons(data=mapdata_new,
|
|
|
|
fillOpacity = 0.6, # Przezroczystość
|
|
|
|
stroke = TRUE, # Borders visible
|
|
|
|
color = "grey", # Border color
|
|
|
|
weight = 1,
|
|
|
|
fillColor = ~qpal(mapdata_new$substr_house_prices_wo_hicp),
|
|
|
|
popup = popup_content,
|
|
|
|
popupOptions = popupOptions(maxWidth ="100%", closeOnClick = TRUE)
|
|
|
|
) %>%
|
|
|
|
setView( lat = 49, lng = 14, zoom = 4) %>%
|
|
|
|
addLegend("bottomright", colors = qpal_colors,
|
|
|
|
title = "<span style='white-space: pre-line;'> Real house prices \n index (2022) </span>",
|
|
|
|
labels = qpal_labs,
|
|
|
|
opacity = 1)
|
|
|
|
}) # End of map module
|
|
|
|
}# End of server
|
|
|
|
# Run
|
|
|
|
shinyApp(ui, server)
|
|
|
|
print(unique(map_df$geo))
|
|
|
|
print(unique(map_df$region))
|
|
|
|
library(shiny)
|
|
|
|
library(leaflet)
|
2023-05-21 15:57:28 +02:00
|
|
|
library(ggplot2)
|
|
|
|
library(dplyr)
|
2023-06-14 11:28:02 +02:00
|
|
|
print(unique(map_df$geo))
|
|
|
|
print(unique(map_df$region))
|
|
|
|
# print(length(map_df$geo))
|
|
|
|
# Frontend
|
|
|
|
ui <- fluidPage(
|
|
|
|
sidebarLayout(
|
|
|
|
sidebarPanel(
|
|
|
|
# Compound interest
|
|
|
|
sliderInput("range", "Compound interest:",min = 0, max = 10, value = c(4,8)),textOutput("Compound interest slider"),
|
|
|
|
# Checkboxes
|
|
|
|
checkboxGroupInput("countries", "Chosen countries:",
|
|
|
|
choiceNames = map_df$region,
|
|
|
|
choiceValues = map_df$geo,
|
|
|
|
selected = c("PL", "DE", "CZ"),
|
|
|
|
inline = TRUE,
|
|
|
|
width = "75%"
|
|
|
|
),
|
|
|
|
width=3
|
|
|
|
),
|
|
|
|
mainPanel(
|
|
|
|
h1("Real house prices index"),
|
|
|
|
tabsetPanel(
|
|
|
|
tabPanel("Plot", plotlyOutput("final_plot")),
|
|
|
|
tabPanel("Map", leafletOutput("mymap")),
|
|
|
|
tabPanel("Table", dataTableOutput('table'))
|
|
|
|
),
|
|
|
|
width = 9
|
|
|
|
),
|
|
|
|
fluid = TRUE
|
|
|
|
)
|
|
|
|
)
|
|
|
|
# Backend
|
|
|
|
server <- function(input, output, session) {
|
|
|
|
output$table <- renderDataTable({
|
|
|
|
merged_df[, !names(merged_df) %in% c("OBS_VALUE.x", "OBS_VALUE.y", "geometry")]
|
|
|
|
}, options = list(pageLength = 10))
|
|
|
|
# Plot module
|
|
|
|
output$final_plot <- renderPlotly({
|
|
|
|
final_plot <- ggplot(filter(merged_df, geo %in% input$countries),
|
|
|
|
aes(x = TIME_PERIOD, y = house_prices_wo_hicp, color = geo,
|
|
|
|
text = paste("Kraj: ", geo, "<br>", "Rok: ", TIME_PERIOD, "<br>",
|
|
|
|
"Cena nieruchomości: ", house_prices_wo_hicp))) +
|
|
|
|
geom_line(aes(group = geo), linetype = "dotted", size = 1) +
|
|
|
|
geom_point() +
|
|
|
|
geom_text(data = filter(merged_df, geo %in% input$countries) %>% group_by(geo) %>% slice(n()),
|
|
|
|
aes(label = "", hjust = -0.2, size = 4)) +
|
|
|
|
stat_function(fun = function(x) 100*(1+input$range[1]/100)^(x-2015), aes(colour = paste0(as.character(input$range[1]), "% Compounding")), inherit.aes = FALSE) +
|
|
|
|
stat_function(fun = function(x) 100*(1+input$range[2]/100)^(x-2015), aes(colour = paste0(as.character(input$range[2]), "% Compounding")), inherit.aes = FALSE) +
|
|
|
|
scale_x_continuous(breaks = seq(2010, 2024, 2)) +
|
|
|
|
labs(x = "Rok", y = "Indeks cen nieruchomości zdyskontowany o wartość inflacji [2015 = 100]",
|
|
|
|
color = "Countries") +
|
|
|
|
theme(axis.title = element_blank())
|
|
|
|
plotly_plot <- ggplotly(final_plot, tooltip = "text")
|
|
|
|
for (i in 1:length(plotly_plot$x$data)) {
|
|
|
|
if (plotly_plot$x$data[[i]]$name == paste0(as.character(input$range[1]), "% Compounding") || plotly_plot$x$data[[i]]$name == paste0(as.character(input$range[1]), "% Compounding")) {
|
|
|
|
plotly_plot$x$data[[i]]$hoverinfo <- "name+y"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
plotly_plot %>% layout(showlegend = TRUE, legend = list(title = list(text = "Countries")))
|
|
|
|
})
|
|
|
|
# Map module
|
|
|
|
output$mymap <- renderLeaflet({
|
|
|
|
leaflet() %>%
|
|
|
|
addProviderTiles(providers$CartoDB.Positron) %>%
|
|
|
|
addPolygons(data=mapdata_new,
|
|
|
|
fillOpacity = 0.6, # Przezroczystość
|
|
|
|
stroke = TRUE, # Borders visible
|
|
|
|
color = "grey", # Border color
|
|
|
|
weight = 1,
|
|
|
|
fillColor = ~qpal(mapdata_new$substr_house_prices_wo_hicp),
|
|
|
|
popup = popup_content,
|
|
|
|
popupOptions = popupOptions(maxWidth ="100%", closeOnClick = TRUE)
|
|
|
|
) %>%
|
|
|
|
setView( lat = 49, lng = 14, zoom = 4) %>%
|
|
|
|
addLegend("bottomright", colors = qpal_colors,
|
|
|
|
title = "<span style='white-space: pre-line;'> Real house prices \n index (2022) </span>",
|
|
|
|
labels = qpal_labs,
|
|
|
|
opacity = 1)
|
|
|
|
}) # End of map module
|
|
|
|
}# End of server
|
|
|
|
# Run
|
|
|
|
shinyApp(ui, server)
|
|
|
|
library(shiny)
|
|
|
|
library(leaflet)
|
2023-05-21 15:57:28 +02:00
|
|
|
library(ggplot2)
|
2023-06-14 11:28:02 +02:00
|
|
|
library(dplyr)
|
|
|
|
print(unique(map_df$geo))
|
|
|
|
print(unique(map_df$region))
|
|
|
|
# print(length(map_df$geo))
|
|
|
|
# Frontend
|
|
|
|
ui <- fluidPage(
|
|
|
|
sidebarLayout(
|
|
|
|
sidebarPanel(
|
|
|
|
# Compound interest
|
|
|
|
sliderInput("range", "Compound interest:",min = 0, max = 10, value = c(4,8)),textOutput("Compound interest slider"),
|
|
|
|
# Checkboxes
|
|
|
|
checkboxGroupInput("countries", "Chosen countries:",
|
|
|
|
choiceNames = map_df$region,
|
|
|
|
choiceValues = map_df$geo,
|
|
|
|
selected = c("PL", "DE", "CZ"),
|
|
|
|
inline = TRUE,
|
|
|
|
width = "75%"
|
|
|
|
)
|
|
|
|
width=3
|
|
|
|
library(shiny)
|
|
|
|
library(leaflet)
|
2023-05-21 15:57:28 +02:00
|
|
|
library(ggplot2)
|
|
|
|
library(dplyr)
|
2023-06-14 11:28:02 +02:00
|
|
|
print(unique(map_df$geo))
|
|
|
|
print(unique(map_df$region))
|
|
|
|
# print(length(map_df$geo))
|
|
|
|
# Frontend
|
|
|
|
ui <- fluidPage(
|
|
|
|
sidebarLayout(
|
|
|
|
sidebarPanel(
|
|
|
|
# Compound interest
|
|
|
|
sliderInput("range", "Compound interest:",min = 0, max = 10, value = c(4,8)),textOutput("Compound interest slider"),
|
|
|
|
# Checkboxes
|
|
|
|
checkboxGroupInput("countries", "Chosen countries:",
|
|
|
|
choiceNames = map_df$region,
|
|
|
|
choiceValues = map_df$geo,
|
|
|
|
selected = c("PL", "DE", "CZ"),
|
|
|
|
inline = TRUE,
|
|
|
|
width = "75%"
|
|
|
|
),
|
|
|
|
width=3
|
|
|
|
),
|
|
|
|
mainPanel(
|
|
|
|
h1("Real house prices index"),
|
|
|
|
tabsetPanel(
|
|
|
|
tabPanel("Plot", plotlyOutput("final_plot")),
|
|
|
|
tabPanel("Map", leafletOutput("mymap")),
|
|
|
|
tabPanel("Table", dataTableOutput('table'))
|
|
|
|
),
|
|
|
|
width = 9
|
|
|
|
),
|
|
|
|
fluid = TRUE
|
|
|
|
)
|
|
|
|
)
|
|
|
|
# Backend
|
|
|
|
server <- function(input, output, session) {
|
|
|
|
output$table <- renderDataTable({
|
|
|
|
merged_df[, !names(merged_df) %in% c("OBS_VALUE.x", "OBS_VALUE.y", "geometry")]
|
|
|
|
}, options = list(pageLength = 10))
|
|
|
|
# Plot module
|
|
|
|
output$final_plot <- renderPlotly({
|
|
|
|
final_plot <- ggplot(filter(merged_df, geo %in% input$countries),
|
|
|
|
aes(x = TIME_PERIOD, y = house_prices_wo_hicp, color = geo,
|
|
|
|
text = paste("Kraj: ", geo, "<br>", "Rok: ", TIME_PERIOD, "<br>",
|
|
|
|
"Cena nieruchomości: ", house_prices_wo_hicp))) +
|
|
|
|
geom_line(aes(group = geo), linetype = "dotted", size = 1) +
|
|
|
|
geom_point() +
|
|
|
|
geom_text(data = filter(merged_df, geo %in% input$countries) %>% group_by(geo) %>% slice(n()),
|
|
|
|
aes(label = "", hjust = -0.2, size = 4)) +
|
|
|
|
stat_function(fun = function(x) 100*(1+input$range[1]/100)^(x-2015), aes(colour = paste0(as.character(input$range[1]), "% Compounding")), inherit.aes = FALSE) +
|
|
|
|
stat_function(fun = function(x) 100*(1+input$range[2]/100)^(x-2015), aes(colour = paste0(as.character(input$range[2]), "% Compounding")), inherit.aes = FALSE) +
|
|
|
|
scale_x_continuous(breaks = seq(2010, 2024, 2)) +
|
|
|
|
labs(x = "Rok", y = "Indeks cen nieruchomości zdyskontowany o wartość inflacji [2015 = 100]",
|
|
|
|
color = "Countries") +
|
|
|
|
theme(axis.title = element_blank())
|
|
|
|
plotly_plot <- ggplotly(final_plot, tooltip = "text")
|
|
|
|
for (i in 1:length(plotly_plot$x$data)) {
|
|
|
|
if (plotly_plot$x$data[[i]]$name == paste0(as.character(input$range[1]), "% Compounding") || plotly_plot$x$data[[i]]$name == paste0(as.character(input$range[1]), "% Compounding")) {
|
|
|
|
plotly_plot$x$data[[i]]$hoverinfo <- "name+y"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
plotly_plot %>% layout(showlegend = TRUE, legend = list(title = list(text = "Countries")))
|
|
|
|
})
|
|
|
|
# Map module
|
|
|
|
output$mymap <- renderLeaflet({
|
|
|
|
leaflet() %>%
|
|
|
|
addProviderTiles(providers$CartoDB.Positron) %>%
|
|
|
|
addPolygons(data=mapdata_new,
|
|
|
|
fillOpacity = 0.6, # Przezroczystość
|
|
|
|
stroke = TRUE, # Borders visible
|
|
|
|
color = "grey", # Border color
|
|
|
|
weight = 1,
|
|
|
|
fillColor = ~qpal(mapdata_new$substr_house_prices_wo_hicp),
|
|
|
|
popup = popup_content,
|
|
|
|
popupOptions = popupOptions(maxWidth ="100%", closeOnClick = TRUE)
|
|
|
|
) %>%
|
|
|
|
setView( lat = 49, lng = 14, zoom = 4) %>%
|
|
|
|
addLegend("bottomright", colors = qpal_colors,
|
|
|
|
title = "<span style='white-space: pre-line;'> Real house prices \n index (2022) </span>",
|
|
|
|
labels = qpal_labs,
|
|
|
|
opacity = 1)
|
|
|
|
}) # End of map module
|
|
|
|
}# End of server
|
|
|
|
# Run
|
|
|
|
shinyApp(ui, server)
|
|
|
|
library(shiny)
|
|
|
|
library(leaflet)
|
2023-05-21 15:57:28 +02:00
|
|
|
library(ggplot2)
|
|
|
|
library(dplyr)
|
2023-06-14 11:28:02 +02:00
|
|
|
print(unique(map_df$geo))
|
|
|
|
print(unique(map_df$region))
|
|
|
|
# print(length(map_df$geo))
|
|
|
|
# Frontend
|
|
|
|
ui <- fluidPage(
|
|
|
|
sidebarLayout(
|
|
|
|
sidebarPanel(
|
|
|
|
# Compound interest
|
|
|
|
sliderInput("range", "Compound interest:",min = 0, max = 10, value = c(4,8)),textOutput("Compound interest slider"),
|
|
|
|
# Checkboxes
|
|
|
|
tags$head(tags$style(HTML(".checkbox {margin-left:15px}"))),
|
|
|
|
checkboxGroupInput("countries", "Chosen countries:",
|
|
|
|
choiceNames = map_df$region,
|
|
|
|
choiceValues = map_df$geo,
|
|
|
|
selected = c("PL", "DE", "CZ"),
|
|
|
|
inline = TRUE,
|
|
|
|
width = "75%"
|
|
|
|
),
|
|
|
|
width=3
|
|
|
|
),
|
|
|
|
mainPanel(
|
|
|
|
h1("Real house prices index"),
|
|
|
|
tabsetPanel(
|
|
|
|
tabPanel("Plot", plotlyOutput("final_plot")),
|
|
|
|
tabPanel("Map", leafletOutput("mymap")),
|
|
|
|
tabPanel("Table", dataTableOutput('table'))
|
|
|
|
),
|
|
|
|
width = 9
|
|
|
|
),
|
|
|
|
fluid = TRUE
|
|
|
|
)
|
|
|
|
)
|
|
|
|
# Backend
|
|
|
|
server <- function(input, output, session) {
|
|
|
|
output$table <- renderDataTable({
|
|
|
|
merged_df[, !names(merged_df) %in% c("OBS_VALUE.x", "OBS_VALUE.y", "geometry")]
|
|
|
|
}, options = list(pageLength = 10))
|
|
|
|
# Plot module
|
|
|
|
output$final_plot <- renderPlotly({
|
|
|
|
final_plot <- ggplot(filter(merged_df, geo %in% input$countries),
|
|
|
|
aes(x = TIME_PERIOD, y = house_prices_wo_hicp, color = geo,
|
|
|
|
text = paste("Kraj: ", geo, "<br>", "Rok: ", TIME_PERIOD, "<br>",
|
|
|
|
"Cena nieruchomości: ", house_prices_wo_hicp))) +
|
|
|
|
geom_line(aes(group = geo), linetype = "dotted", size = 1) +
|
|
|
|
geom_point() +
|
|
|
|
geom_text(data = filter(merged_df, geo %in% input$countries) %>% group_by(geo) %>% slice(n()),
|
|
|
|
aes(label = "", hjust = -0.2, size = 4)) +
|
|
|
|
stat_function(fun = function(x) 100*(1+input$range[1]/100)^(x-2015), aes(colour = paste0(as.character(input$range[1]), "% Compounding")), inherit.aes = FALSE) +
|
|
|
|
stat_function(fun = function(x) 100*(1+input$range[2]/100)^(x-2015), aes(colour = paste0(as.character(input$range[2]), "% Compounding")), inherit.aes = FALSE) +
|
|
|
|
scale_x_continuous(breaks = seq(2010, 2024, 2)) +
|
|
|
|
labs(x = "Rok", y = "Indeks cen nieruchomości zdyskontowany o wartość inflacji [2015 = 100]",
|
|
|
|
color = "Countries") +
|
|
|
|
theme(axis.title = element_blank())
|
|
|
|
plotly_plot <- ggplotly(final_plot, tooltip = "text")
|
|
|
|
for (i in 1:length(plotly_plot$x$data)) {
|
|
|
|
if (plotly_plot$x$data[[i]]$name == paste0(as.character(input$range[1]), "% Compounding") || plotly_plot$x$data[[i]]$name == paste0(as.character(input$range[1]), "% Compounding")) {
|
|
|
|
plotly_plot$x$data[[i]]$hoverinfo <- "name+y"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
plotly_plot %>% layout(showlegend = TRUE, legend = list(title = list(text = "Countries")))
|
|
|
|
})
|
|
|
|
# Map module
|
|
|
|
output$mymap <- renderLeaflet({
|
|
|
|
leaflet() %>%
|
|
|
|
addProviderTiles(providers$CartoDB.Positron) %>%
|
|
|
|
addPolygons(data=mapdata_new,
|
|
|
|
fillOpacity = 0.6, # Przezroczystość
|
|
|
|
stroke = TRUE, # Borders visible
|
|
|
|
color = "grey", # Border color
|
|
|
|
weight = 1,
|
|
|
|
fillColor = ~qpal(mapdata_new$substr_house_prices_wo_hicp),
|
|
|
|
popup = popup_content,
|
|
|
|
popupOptions = popupOptions(maxWidth ="100%", closeOnClick = TRUE)
|
|
|
|
) %>%
|
|
|
|
setView( lat = 49, lng = 14, zoom = 4) %>%
|
|
|
|
addLegend("bottomright", colors = qpal_colors,
|
|
|
|
title = "<span style='white-space: pre-line;'> Real house prices \n index (2022) </span>",
|
|
|
|
labels = qpal_labs,
|
|
|
|
opacity = 1)
|
|
|
|
}) # End of map module
|
|
|
|
}# End of server
|
|
|
|
# Run
|
|
|
|
shinyApp(ui, server)
|
|
|
|
library(shiny)
|
|
|
|
library(leaflet)
|
2023-05-21 15:57:28 +02:00
|
|
|
library(ggplot2)
|
|
|
|
library(dplyr)
|
2023-06-14 11:28:02 +02:00
|
|
|
print(unique(map_df$geo))
|
|
|
|
print(unique(map_df$region))
|
|
|
|
# print(length(map_df$geo))
|
|
|
|
# Frontend
|
|
|
|
ui <- fluidPage(
|
|
|
|
sidebarLayout(
|
|
|
|
sidebarPanel(
|
|
|
|
# Compound interest
|
|
|
|
sliderInput("range", "Compound interest:",min = 0, max = 10, value = c(4,8)),textOutput("Compound interest slider"),
|
|
|
|
# Checkboxes
|
|
|
|
# tags$head(tags$style(HTML(".checkbox {margin-left:15px}"))),
|
|
|
|
checkboxGroupInput("countries", "Chosen countries:",
|
|
|
|
choiceNames = map_df$region,
|
|
|
|
choiceValues = map_df$geo,
|
|
|
|
selected = c("PL", "DE", "CZ"),
|
|
|
|
inline = TRUE,
|
|
|
|
width = "75%"
|
|
|
|
),
|
|
|
|
width=3
|
|
|
|
),
|
|
|
|
mainPanel(
|
|
|
|
h1("Real house prices index"),
|
|
|
|
tabsetPanel(
|
|
|
|
tabPanel("Plot", plotlyOutput("final_plot")),
|
|
|
|
tabPanel("Map", leafletOutput("mymap")),
|
|
|
|
tabPanel("Table", dataTableOutput('table'))
|
|
|
|
),
|
|
|
|
width = 9
|
|
|
|
),
|
|
|
|
fluid = TRUE
|
|
|
|
)
|
|
|
|
)
|
|
|
|
# Backend
|
|
|
|
server <- function(input, output, session) {
|
|
|
|
output$table <- renderDataTable({
|
|
|
|
merged_df[, !names(merged_df) %in% c("OBS_VALUE.x", "OBS_VALUE.y", "geometry")]
|
|
|
|
}, options = list(pageLength = 10))
|
|
|
|
# Plot module
|
|
|
|
output$final_plot <- renderPlotly({
|
|
|
|
final_plot <- ggplot(filter(merged_df, geo %in% input$countries),
|
|
|
|
aes(x = TIME_PERIOD, y = house_prices_wo_hicp, color = geo,
|
|
|
|
text = paste("Kraj: ", geo, "<br>", "Rok: ", TIME_PERIOD, "<br>",
|
|
|
|
"Cena nieruchomości: ", house_prices_wo_hicp))) +
|
|
|
|
geom_line(aes(group = geo), linetype = "dotted", size = 1) +
|
|
|
|
geom_point() +
|
|
|
|
geom_text(data = filter(merged_df, geo %in% input$countries) %>% group_by(geo) %>% slice(n()),
|
|
|
|
aes(label = "", hjust = -0.2, size = 4)) +
|
|
|
|
stat_function(fun = function(x) 100*(1+input$range[1]/100)^(x-2015), aes(colour = paste0(as.character(input$range[1]), "% Compounding")), inherit.aes = FALSE) +
|
|
|
|
stat_function(fun = function(x) 100*(1+input$range[2]/100)^(x-2015), aes(colour = paste0(as.character(input$range[2]), "% Compounding")), inherit.aes = FALSE) +
|
|
|
|
scale_x_continuous(breaks = seq(2010, 2024, 2)) +
|
|
|
|
labs(x = "Rok", y = "Indeks cen nieruchomości zdyskontowany o wartość inflacji [2015 = 100]",
|
|
|
|
color = "Countries") +
|
|
|
|
theme(axis.title = element_blank())
|
|
|
|
plotly_plot <- ggplotly(final_plot, tooltip = "text")
|
|
|
|
for (i in 1:length(plotly_plot$x$data)) {
|
|
|
|
if (plotly_plot$x$data[[i]]$name == paste0(as.character(input$range[1]), "% Compounding") || plotly_plot$x$data[[i]]$name == paste0(as.character(input$range[1]), "% Compounding")) {
|
|
|
|
plotly_plot$x$data[[i]]$hoverinfo <- "name+y"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
plotly_plot %>% layout(showlegend = TRUE, legend = list(title = list(text = "Countries")))
|
|
|
|
})
|
|
|
|
# Map module
|
|
|
|
output$mymap <- renderLeaflet({
|
|
|
|
leaflet() %>%
|
|
|
|
addProviderTiles(providers$CartoDB.Positron) %>%
|
|
|
|
addPolygons(data=mapdata_new,
|
|
|
|
fillOpacity = 0.6, # Przezroczystość
|
|
|
|
stroke = TRUE, # Borders visible
|
|
|
|
color = "grey", # Border color
|
|
|
|
weight = 1,
|
|
|
|
fillColor = ~qpal(mapdata_new$substr_house_prices_wo_hicp),
|
|
|
|
popup = popup_content,
|
|
|
|
popupOptions = popupOptions(maxWidth ="100%", closeOnClick = TRUE)
|
|
|
|
) %>%
|
|
|
|
setView( lat = 49, lng = 14, zoom = 4) %>%
|
|
|
|
addLegend("bottomright", colors = qpal_colors,
|
|
|
|
title = "<span style='white-space: pre-line;'> Real house prices \n index (2022) </span>",
|
|
|
|
labels = qpal_labs,
|
|
|
|
opacity = 1)
|
|
|
|
}) # End of map module
|
|
|
|
}# End of server
|
|
|
|
# Run
|
|
|
|
shinyApp(ui, server)
|
|
|
|
library(shiny)
|
|
|
|
library(leaflet)
|
2023-05-21 15:57:28 +02:00
|
|
|
library(ggplot2)
|
2023-06-14 11:28:02 +02:00
|
|
|
library(dplyr)
|
|
|
|
# Frontend
|
|
|
|
ui <- fluidPage(
|
|
|
|
sidebarLayout(
|
|
|
|
sidebarPanel(
|
|
|
|
# Compound interest
|
|
|
|
sliderInput("range", "Compound interest:",min = 0, max = 10, value = c(4,8)),textOutput("Compound interest slider"),
|
|
|
|
# Checkboxes
|
|
|
|
# tags$head(tags$style(HTML(".checkbox {margin-left:15px}"))),
|
|
|
|
checkboxGroupInput("countries", "Chosen countries:",
|
|
|
|
choiceNames = map_df$region,
|
|
|
|
choiceValues = map_df$geo,
|
|
|
|
selected = c("PL", "DE", "CZ"),
|
|
|
|
inline = TRUE,
|
|
|
|
width = "75%"
|
|
|
|
),
|
|
|
|
width=3
|
|
|
|
),
|
|
|
|
mainPanel(
|
|
|
|
h1("Real house prices index"),
|
|
|
|
tabsetPanel(
|
|
|
|
tabPanel("Plot", plotlyOutput("final_plot")),
|
|
|
|
tabPanel("Map", leafletOutput("mymap")),
|
|
|
|
tabPanel("Table", dataTableOutput('table'))
|
|
|
|
),
|
|
|
|
width = 9
|
|
|
|
),
|
|
|
|
fluid = TRUE
|
|
|
|
)
|
|
|
|
)
|
|
|
|
# Backend
|
|
|
|
server <- function(input, output, session) {
|
|
|
|
output$table <- renderDataTable({
|
|
|
|
merged_df[, !names(merged_df) %in% c("OBS_VALUE.x", "OBS_VALUE.y", "geometry")]
|
|
|
|
}, options = list(pageLength = 10))
|
|
|
|
# Plot module
|
|
|
|
output$final_plot <- renderPlotly({
|
|
|
|
final_plot <- ggplot(filter(merged_df, geo %in% input$countries),
|
|
|
|
aes(x = TIME_PERIOD, y = house_prices_wo_hicp, color = geo,
|
|
|
|
text = paste("Kraj: ", geo, "<br>", "Rok: ", TIME_PERIOD, "<br>",
|
|
|
|
"Cena nieruchomości: ", house_prices_wo_hicp))) +
|
|
|
|
geom_line(aes(group = geo), linetype = "dotted", size = 1) +
|
|
|
|
geom_point() +
|
|
|
|
geom_text(data = filter(merged_df, geo %in% input$countries) %>% group_by(geo) %>% slice(n()),
|
|
|
|
aes(label = "", hjust = -0.2, size = 4)) +
|
|
|
|
stat_function(fun = function(x) 100*(1+input$range[1]/100)^(x-2015), aes(colour = paste0(as.character(input$range[1]), "% Compounding")), inherit.aes = FALSE) +
|
|
|
|
stat_function(fun = function(x) 100*(1+input$range[2]/100)^(x-2015), aes(colour = paste0(as.character(input$range[2]), "% Compounding")), inherit.aes = FALSE) +
|
|
|
|
scale_x_continuous(breaks = seq(2010, 2024, 2)) +
|
|
|
|
labs(x = "Rok", y = "Indeks cen nieruchomości zdyskontowany o wartość inflacji [2015 = 100]",
|
|
|
|
color = "Countries") +
|
|
|
|
theme(axis.title = element_blank())
|
|
|
|
plotly_plot <- ggplotly(final_plot, tooltip = "text")
|
|
|
|
for (i in 1:length(plotly_plot$x$data)) {
|
|
|
|
if (plotly_plot$x$data[[i]]$name == paste0(as.character(input$range[1]), "% Compounding") || plotly_plot$x$data[[i]]$name == paste0(as.character(input$range[1]), "% Compounding")) {
|
|
|
|
plotly_plot$x$data[[i]]$hoverinfo <- "name+y"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
plotly_plot %>% layout(showlegend = TRUE, legend = list(title = list(text = "Countries")))
|
|
|
|
})
|
|
|
|
# Map module
|
|
|
|
output$mymap <- renderLeaflet({
|
|
|
|
leaflet() %>%
|
|
|
|
addProviderTiles(providers$CartoDB.Positron) %>%
|
|
|
|
addPolygons(data=mapdata_new,
|
|
|
|
fillOpacity = 0.6, # Przezroczystość
|
|
|
|
stroke = TRUE, # Borders visible
|
|
|
|
color = "grey", # Border color
|
|
|
|
weight = 1,
|
|
|
|
fillColor = ~qpal(mapdata_new$substr_house_prices_wo_hicp),
|
|
|
|
popup = popup_content,
|
|
|
|
popupOptions = popupOptions(maxWidth ="100%", closeOnClick = TRUE)
|
|
|
|
) %>%
|
|
|
|
setView( lat = 49, lng = 14, zoom = 4) %>%
|
|
|
|
addLegend("bottomright", colors = qpal_colors,
|
|
|
|
title = "<span style='white-space: pre-line;'> Real house prices \n index (2022) </span>",
|
|
|
|
labels = qpal_labs,
|
|
|
|
opacity = 1)
|
|
|
|
}) # End of map module
|
|
|
|
}# End of server
|
|
|
|
# Run
|
|
|
|
shinyApp(ui, server)
|