diff --git a/projekt_1_housing.R b/projekt_1_housing.R
index 4b6e600..6136ce1 100644
--- a/projekt_1_housing.R
+++ b/projekt_1_housing.R
@@ -1,4 +1,4 @@
-<<<<<<< HEAD
+
library(dplyr)
# install.packages("lifecycle")
library(ggplot2)
@@ -143,147 +143,145 @@ ggplot(merged_df, aes(x = TIME_PERIOD, y = house_prices_wo_hicp, color = geo)) +
labs(x = "Year", y = 'Indeks cen nieruchomości zdyskontowany o wartość inflacji [2015 = 100]')
=======
-library(dplyr)
-# install.packages("ggplot2")
-library(ggplot2)
-countries = c( 'PL', 'DE', 'CZ', 'NL', 'RO')
-
-df = read.csv(".//data//prc_hicp_aind_page_linear.csv")
-df[,c("geo", "TIME_PERIOD", "OBS_VALUE")]
-
-
-df1 = read.csv(".//data//prc_hpi_a__custom_3617733_page_linear.csv")
-df1[,c("geo", "TIME_PERIOD", "OBS_VALUE")]
-
-colnames(df1)
-
-
-df2 = read.csv(".//data//sdg_08_10_page_linear.csv")
-df2[,c("geo", "TIME_PERIOD", "OBS_VALUE")]
-
-colnames(df2)
-
-df3 = read.csv(".//data//tec00114_page_linear.csv")
-df3[,c("geo", "TIME_PERIOD", "OBS_VALUE")]
-
-colnames(df3)
-print(df3)
-
-# ##################################################
-# Single Country GDP graph
-
-year_country_gdp <- df3 %>% select( TIME_PERIOD, geo, OBS_VALUE)
-year_country_gdp <- na.omit(year_country_gdp)
-
-colnames(year_country_gdp)
-
-df3 %>% group_by(geo) %>% str()
-
-str(year_country_gdp)
-
-year_country_gdp <- filter(year_country_gdp, geo %in% countries)
-
-# Plot
-ggplot(year_country_gdp, aes(x = TIME_PERIOD, y = OBS_VALUE, color = geo, label = geo)) +
- geom_line() +
- geom_point() +
- geom_text(aes(label = geo), hjust = -0.1, size = 3)+
- labs(x = "Rok", y = 'PKB per capita w PPP [PPS_EU27_2020=100]') +
- scale_x_continuous(breaks=seq(2010,2024,2))
-
-year_country_gdp
-# ##################################################
-# House price index HPI
-df1
-house_price_index <- df1 %>% select( TIME_PERIOD, geo, OBS_VALUE)
-house_price_index <- na.omit(house_price_index)
-
-colnames(house_price_index)
-
-df1 %>% group_by(geo) %>% str()
-
-str(house_price_index)
-
-house_price_index <- filter(house_price_index, geo %in% countries)
-
-# Plot
-ggplot(house_price_index, aes(x = TIME_PERIOD, y = OBS_VALUE, color = geo, label = geo)) +
- geom_line() +
- geom_point() +
- geom_text(data = house_price_index %>%
- group_by(geo) %>%
- slice(n() - 1),
- aes(label = geo, hjust = -1, size = 4))+
- scale_x_continuous(breaks=seq(2010,2024,2))
- labs(x = "Rok", y = 'Indeks Cen nieruchomości [cena z 2015 roku = 100]')
-
-
-house_price_index
-# ######################################
-
-# HICP - Harmonised Index for Consumer Prices
-df
-hicp_index <- df %>% select( TIME_PERIOD, geo, OBS_VALUE)
-hicp_index <- na.omit(hicp_index)
-
-colnames(hicp_index)
-
-df %>% group_by(geo) %>% str()
-
-str(hicp_index)
-
-hicp_index <- filter(hicp_index, geo %in% countries)
-
-# Plot
-ggplot(hicp_index, aes(x = TIME_PERIOD, y = OBS_VALUE, color = geo, label = geo)) +
- geom_line() +
- geom_point() +
- geom_text(data = hicp_index %>%
- group_by(geo) %>%
- slice(n()),
- aes(label = geo, hjust = -0.2, size = 4)) +
- labs(x = "Rok", y = 'Indeks inflacji konsumenckiej HICP [2015 = 100]') +
- scale_x_continuous(breaks=seq(2010,2024,2))
-
-
-hicp_index
-
-# ########################
-# Show data discounting inflation rate
-
-# Merge the two data frames using the 'country' and 'date' columns
-merged_df <- merge(house_price_index, hicp_index, by = c("geo", "TIME_PERIOD"))
-
-merged_df
-# Create a new column that divides 'value1' by 'value2'
-merged_df$house_prices_wo_hicp <- merged_df$OBS_VALUE.x / merged_df$OBS_VALUE.y*100
-
-merged_df$TIME_PERIOD
-merged_df$compound_growth <- 1 * (1 + 0.02) ^ (1:(merged_df$TIME_PERIOD-2015))
-
-# View the resulting merged data frame with the divided values
-merged_df
-merged_df <- na.omit(merged_df)
-
-colnames(merged_df)
-
-merged_df %>% group_by(geo) %>% str()
-
-str(merged_df)
-
-merged_df <- filter(merged_df, geo %in% countries)
-
-# Plot
-ggplot(merged_df, aes(x = TIME_PERIOD, y = house_prices_wo_hicp, color = geo)) +
- geom_line(linetype="dotted", size=1) +
- geom_point(aes(x=TIME_PERIOD, y=house_prices_wo_hicp)) +
- geom_text(data = merged_df %>%
- group_by(geo) %>%
- slice(n()),
- aes(label = geo, hjust = -0.2, size = 4)) +
- stat_function(fun=function(x) 100*(1.04)^(x-2015), aes(colour = "4% Compounding")) +
- stat_function(fun=function(x) 100*(1.07)^(x-2015), aes(colour = "7% Compounding")) +
- scale_x_continuous(breaks=seq(2010,2024,2)) +
- labs(x = "Year", y = 'Indeks cen nieruchomości zdyskontowany o wartość inflacji [2015 = 100]')
-
->>>>>>> 9cd7ec6d23058242fa1b48bf76dd80c927b5ef48
+library(dplyr)
+# install.packages("ggplot2")
+library(ggplot2)
+countries = c( 'PL', 'DE', 'CZ', 'NL', 'RO')
+
+df = read.csv(".//data//prc_hicp_aind_page_linear.csv")
+df[,c("geo", "TIME_PERIOD", "OBS_VALUE")]
+
+
+df1 = read.csv(".//data//prc_hpi_a__custom_3617733_page_linear.csv")
+df1[,c("geo", "TIME_PERIOD", "OBS_VALUE")]
+
+colnames(df1)
+
+
+df2 = read.csv(".//data//sdg_08_10_page_linear.csv")
+df2[,c("geo", "TIME_PERIOD", "OBS_VALUE")]
+
+colnames(df2)
+
+df3 = read.csv(".//data//tec00114_page_linear.csv")
+df3[,c("geo", "TIME_PERIOD", "OBS_VALUE")]
+
+colnames(df3)
+print(df3)
+
+# ##################################################
+# Single Country GDP graph
+
+year_country_gdp <- df3 %>% select( TIME_PERIOD, geo, OBS_VALUE)
+year_country_gdp <- na.omit(year_country_gdp)
+
+colnames(year_country_gdp)
+
+df3 %>% group_by(geo) %>% str()
+
+str(year_country_gdp)
+
+year_country_gdp <- filter(year_country_gdp, geo %in% countries)
+
+# Plot
+ggplot(year_country_gdp, aes(x = TIME_PERIOD, y = OBS_VALUE, color = geo, label = geo)) +
+ geom_line() +
+ geom_point() +
+ geom_text(aes(label = geo), hjust = -0.1, size = 3)+
+ labs(x = "Rok", y = 'PKB per capita w PPP [PPS_EU27_2020=100]') +
+ scale_x_continuous(breaks=seq(2010,2024,2))
+
+year_country_gdp
+# ##################################################
+# House price index HPI
+df1
+house_price_index <- df1 %>% select( TIME_PERIOD, geo, OBS_VALUE)
+house_price_index <- na.omit(house_price_index)
+
+colnames(house_price_index)
+
+df1 %>% group_by(geo) %>% str()
+
+str(house_price_index)
+
+house_price_index <- filter(house_price_index, geo %in% countries)
+
+# Plot
+ggplot(house_price_index, aes(x = TIME_PERIOD, y = OBS_VALUE, color = geo, label = geo)) +
+ geom_line() +
+ geom_point() +
+ geom_text(data = house_price_index %>%
+ group_by(geo) %>%
+ slice(n() - 1),
+ aes(label = geo, hjust = -1, size = 4))+
+ scale_x_continuous(breaks=seq(2010,2024,2))
+ labs(x = "Rok", y = 'Indeks Cen nieruchomości [cena z 2015 roku = 100]')
+
+
+house_price_index
+# ######################################
+
+# HICP - Harmonised Index for Consumer Prices
+df
+hicp_index <- df %>% select( TIME_PERIOD, geo, OBS_VALUE)
+hicp_index <- na.omit(hicp_index)
+
+colnames(hicp_index)
+
+df %>% group_by(geo) %>% str()
+
+str(hicp_index)
+
+hicp_index <- filter(hicp_index, geo %in% countries)
+
+# Plot
+ggplot(hicp_index, aes(x = TIME_PERIOD, y = OBS_VALUE, color = geo, label = geo)) +
+ geom_line() +
+ geom_point() +
+ geom_text(data = hicp_index %>%
+ group_by(geo) %>%
+ slice(n()),
+ aes(label = geo, hjust = -0.2, size = 4)) +
+ labs(x = "Rok", y = 'Indeks inflacji konsumenckiej HICP [2015 = 100]') +
+ scale_x_continuous(breaks=seq(2010,2024,2))
+
+
+hicp_index
+
+# ########################
+# Show data discounting inflation rate
+
+# Merge the two data frames using the 'country' and 'date' columns
+merged_df <- merge(house_price_index, hicp_index, by = c("geo", "TIME_PERIOD"))
+
+merged_df
+# Create a new column that divides 'value1' by 'value2'
+merged_df$house_prices_wo_hicp <- merged_df$OBS_VALUE.x / merged_df$OBS_VALUE.y*100
+
+merged_df$TIME_PERIOD
+merged_df$compound_growth <- 1 * (1 + 0.02) ^ (1:(merged_df$TIME_PERIOD-2015))
+
+# View the resulting merged data frame with the divided values
+merged_df
+merged_df <- na.omit(merged_df)
+
+colnames(merged_df)
+
+merged_df %>% group_by(geo) %>% str()
+
+str(merged_df)
+
+merged_df <- filter(merged_df, geo %in% countries)
+
+# Plot
+ggplot(merged_df, aes(x = TIME_PERIOD, y = house_prices_wo_hicp, color = geo)) +
+ geom_line(linetype="dotted", size=1) +
+ geom_point(aes(x=TIME_PERIOD, y=house_prices_wo_hicp)) +
+ geom_text(data = merged_df %>%
+ group_by(geo) %>%
+ slice(n()),
+ aes(label = geo, hjust = -0.2, size = 4)) +
+ stat_function(fun=function(x) 100*(1.04)^(x-2015), aes(colour = "4% Compounding")) +
+ stat_function(fun=function(x) 100*(1.07)^(x-2015), aes(colour = "7% Compounding")) +
+ scale_x_continuous(breaks=seq(2010,2024,2)) +
+ labs(x = "Year", y = 'Indeks cen nieruchomości zdyskontowany o wartość inflacji [2015 = 100]')
\ No newline at end of file
diff --git a/projekt_1_housing_new.r b/projekt_1_housing_new.r
new file mode 100644
index 0000000..7ed4be4
--- /dev/null
+++ b/projekt_1_housing_new.r
@@ -0,0 +1,219 @@
+library(dplyr)
+# install.packages("ggplot2")
+library(ggplot2)
+library(plotly)
+countries = c( 'PL', 'DE', 'CZ', 'NL', 'RO', 'XD')
+
+countries <- unique(map_df$geo)
+
+df = read.csv(".//data//prc_hicp_aind_page_linear.csv")
+df[,c("geo", "TIME_PERIOD", "OBS_VALUE")]
+
+
+df1 = read.csv(".//data//prc_hpi_a__custom_3617733_page_linear.csv")
+df1[,c("geo", "TIME_PERIOD", "OBS_VALUE")]
+
+colnames(df1)
+
+
+df2 = read.csv(".//data//sdg_08_10_page_linear.csv")
+df2[,c("geo", "TIME_PERIOD", "OBS_VALUE")]
+
+colnames(df2)
+
+df3 = read.csv(".//data//tec00114_page_linear.csv")
+df3[,c("geo", "TIME_PERIOD", "OBS_VALUE")]
+
+colnames(df3)
+print(df3)
+
+# ##################################################
+# Single Country GDP graph
+
+year_country_gdp <- df3 %>% select( TIME_PERIOD, geo, OBS_VALUE)
+year_country_gdp <- na.omit(year_country_gdp)
+
+colnames(year_country_gdp)
+
+df3 %>% group_by(geo) %>% str()
+
+str(year_country_gdp)
+
+year_country_gdp <- filter(year_country_gdp, geo %in% countries)
+
+# Plot
+ggplot(year_country_gdp, aes(x = TIME_PERIOD, y = OBS_VALUE, color = geo, label = geo)) +
+ geom_line() +
+ geom_point() +
+ geom_text(aes(label = geo), hjust = -0.1, size = 3)+
+ labs(x = "Rok", y = 'PKB per capita w PPP [PPS_EU27_2020=100]') +
+ scale_x_continuous(breaks=seq(2010,2024,2))
+
+plot <- ggplot(year_country_gdp, aes(x = TIME_PERIOD, y = OBS_VALUE, color = geo, text = paste("Kraj: ", geo, "
",
+ "Rok: ", TIME_PERIOD, "
",
+ "Warto?? wska?nika: ", OBS_VALUE))) +
+ geom_line(aes(group = geo)) +
+ geom_point() +
+ labs(x = "Rok", y = 'PKB per capita w PPP [PPS_EU27_2020=100]') +
+ scale_x_continuous(breaks = seq(2010, 2024, 2))
+
+plotly_plot <- ggplotly(plot, tooltip = "text")
+
+plotly_plot
+
+
+year_country_gdp
+# ##################################################
+# House price index HPI
+df1
+house_price_index <- df1 %>% select( TIME_PERIOD, geo, OBS_VALUE)
+house_price_index <- na.omit(house_price_index)
+
+colnames(house_price_index)
+
+df1 %>% group_by(geo) %>% str()
+
+str(house_price_index)
+
+house_price_index <- filter(house_price_index, geo %in% countries)
+
+# Plot
+ggplot(house_price_index, aes(x = TIME_PERIOD, y = OBS_VALUE, color = geo, label = geo)) +
+ geom_line() +
+ geom_point() +
+ geom_text(data = house_price_index %>%
+ group_by(geo) %>%
+ slice(n() - 1),
+ aes(label = geo, hjust = -1, size = 4))+
+ scale_x_continuous(breaks=seq(2010,2024,2))
+ labs(x = "Rok", y = 'Indeks Cen nieruchomo?ci [cena z 2015 roku = 100]')
+
+plot <- ggplot(house_price_index, aes(x = TIME_PERIOD, y = OBS_VALUE, color = geo, text = paste("Kraj: ", geo, "
",
+ "Rok: ", TIME_PERIOD, "
",
+ "Warto?? wska?nika: ", OBS_VALUE))) +
+ geom_line() +
+ geom_point() +
+ scale_x_continuous(breaks = seq(2010, 2024, 2)) +
+ labs(x = "Rok", y = 'Indeks Cen nieruchomo?ci [cena z 2015 roku = 100]')
+plotly_plot <- ggplotly(plot, tooltip = "text")
+for (i in 1:length(plotly_plot$x$data)) {
+ if (plotly_plot$x$data[[i]]$type == "scatter") {
+ plotly_plot$x$data[[i]]$mode <- "lines+markers"
+ }
+}
+plotly_plot
+
+house_price_index
+# ######################################
+
+# HICP - Harmonised Index for Consumer Prices
+df
+hicp_index <- df %>% select( TIME_PERIOD, geo, OBS_VALUE)
+hicp_index <- na.omit(hicp_index)
+
+colnames(hicp_index)
+
+df %>% group_by(geo) %>% str()
+
+str(hicp_index)
+
+hicp_index <- filter(hicp_index, geo %in% countries)
+
+# Plot
+ggplot(hicp_index, aes(x = TIME_PERIOD, y = OBS_VALUE, color = geo, label = geo)) +
+ geom_line() +
+ geom_point() +
+ geom_text(data = hicp_index %>%
+ group_by(geo) %>%
+ slice(n()),
+ aes(label = geo, hjust = -0.2, size = 4)) +
+ labs(x = "Rok", y = 'Indeks inflacji konsumenckiej HICP [2015 = 100]') +
+ scale_x_continuous(breaks=seq(2010,2024,2))
+
+
+plot <- ggplot(hicp_index, aes(x = TIME_PERIOD, y = OBS_VALUE, color = geo, text = paste("Kraj: ", geo, "
",
+ "Rok: ", TIME_PERIOD, "
",
+ "Warto?? wska?nika: ", OBS_VALUE))) +
+ geom_line() +
+ geom_point() +
+ labs(x = "Rok", y = 'Indeks inflacji konsumenckiej HICP [2015 = 100]') +
+ scale_x_continuous(breaks = seq(2010, 2024, 2))
+
+plotly_plot <- ggplotly(plot, tooltip = "text")
+
+for (i in 1:length(plotly_plot$x$data)) {
+ if (plotly_plot$x$data[[i]]$type == "scatter") {
+ plotly_plot$x$data[[i]]$mode <- "lines+markers"
+ }
+}
+plotly_plot
+
+
+hicp_index
+
+# ########################
+# Show data discounting inflation rate
+
+# Merge the two data frames using the 'country' and 'date' columns
+merged_df <- merge(house_price_index, hicp_index, by = c("geo", "TIME_PERIOD"))
+
+merged_df
+# Create a new column that divides 'value1' by 'value2'
+merged_df$house_prices_wo_hicp <- merged_df$OBS_VALUE.x / merged_df$OBS_VALUE.y*100
+
+merged_df$TIME_PERIOD
+merged_df$compound_growth <- 1 * (1 + 0.02) ^ (1:(merged_df$TIME_PERIOD-2015))
+
+# View the resulting merged data frame with the divided values
+merged_df
+merged_df <- na.omit(merged_df)
+
+colnames(merged_df)
+
+merged_df %>% group_by(geo) %>% str()
+
+str(merged_df)
+
+unfiltered_df <- merged_df
+merged_df <- filter(merged_df, geo %in% countries)
+
+
+
+
+ggplot(merged_df, aes(x = TIME_PERIOD, y = house_prices_wo_hicp, color = geo)) +
+ geom_line(linetype="dotted", size=1) +
+ geom_point(aes(x=TIME_PERIOD, y=house_prices_wo_hicp)) +
+ geom_text(data = merged_df %>%
+ group_by(geo) %>%
+ slice(n()),
+ aes(label = geo, hjust = -0.2, size = 4)) +
+ stat_function(fun=function(x) 100*(1.04)^(x-2015), aes(colour = "4% Compounding")) +
+ stat_function(fun=function(x) 100*(1.07)^(x-2015), aes(colour = "7% Compounding")) +
+ scale_x_continuous(breaks=seq(2010,2024,2)) +
+ labs(x = "Year", y = 'Indeks cen nieruchomo?ci zdyskontowany o warto?? inflacji [2015 = 100]')
+
+
+final_plot <- ggplot(merged_df, aes(x = TIME_PERIOD, y = house_prices_wo_hicp, color = geo,
+ text = paste("Kraj: ", geo, "
", "Rok: ", TIME_PERIOD, "
",
+ "Cena nieruchomo?ci: ", house_prices_wo_hicp))) +
+ geom_line(aes(group = geo), linetype = "dotted", size = 1) +
+ geom_point() +
+ geom_text(data = merged_df %>% group_by(geo) %>% slice(n()),
+ aes(label = "", hjust = -0.2, size = 4)) +
+ stat_function(fun = function(x) 100*(1.04)^(x-2015), aes(colour = "4% Compounding"), inherit.aes = FALSE) +
+ stat_function(fun = function(x) 100*(1.07)^(x-2015), aes(colour = "7% Compounding"), inherit.aes = FALSE) +
+ scale_x_continuous(breaks = seq(2010, 2024, 2)) +
+ labs(x = "Rok", y = "Indeks cen nieruchomości zdyskontowany o wartość inflacji [2015 = 100]")
+
+final_plot
+
+plotly_plot <- ggplotly(final_plot, tooltip = "text")
+
+for (i in 1:length(plotly_plot$x$data)) {
+ if (plotly_plot$x$data[[i]]$name == "4% Compounding" || plotly_plot$x$data[[i]]$name == "7% Compounding") {
+ plotly_plot$x$data[[i]]$hoverinfo <- "name+y"
+ }
+}
+
+plotly_plot
+
diff --git a/projekt_2_housing_new.R b/projekt_2_housing_new.R
index cb85127..e03be51 100644
--- a/projekt_2_housing_new.R
+++ b/projekt_2_housing_new.R
@@ -1,89 +1,88 @@
-library(tidyverse)
-library(eurostat)
-# install.packages("ggthemes")
-library(leaflet)
-library(sf)
-library(scales)
-library(cowplot)
-library(ggthemes)
-
-library(RColorBrewer)
-
-# Load results from project_1
-map_df = read.csv(".//data//compound_interest_housing.csv")
-map_df
-
-# Load map/polygon data from eurostat
-SHP_0 <- get_eurostat_geospatial(resolution = 10,
- nuts_level = 0,
- year = 2016)
-
-SHP_0 %>%
- ggplot() +
- geom_sf()
-
-EU28 <- eu_countries %>%
- select(geo = code, name)
-
-SHP_28 <- SHP_0 %>%
- select(geo = NUTS_ID, geometry) %>%
- inner_join(EU28, by = "geo") %>%
- arrange(geo) %>%
- st_as_sf()
-
-SHP_28 %>%
- ggplot() +
- geom_sf() +
- scale_x_continuous(limits = c(-10, 35)) +
- scale_y_continuous(limits = c(35, 65))
-
-# Join datasets
-
-mapdata_new <- left_join(SHP_28, map_df, by="geo", relationship = "many-to-many")
-
-# Delete Greece (null values)
-mapdata_new <- mapdata_new[-9,]
-
-mapdata_new$wiki <- paste0( "https://en.wikipedia.org/wiki/", mapdata_new$name )
-
-# Create a continuous palette function
-qpal <- colorQuantile("YlOrBr", mapdata_new$substr_house_prices_wo_hicp, n = 5)
-
-qpal_colors <- unique(qpal(sort(mapdata_new$substr_house_prices_wo_hicp))) # hex codes
-qpal_labs <- quantile(mapdata_new$substr_house_prices_wo_hicp, seq(0, 1, .2)) # depends on n from pal
-qpal_labs <- paste(lag(qpal_labs), qpal_labs, sep = " - ")[-1] # first lag is NA
-
-popup_content <- paste0( "