Final changes
This commit is contained in:
parent
278b1622ea
commit
c3d100ece3
@ -2,9 +2,8 @@ library(dplyr)
|
||||
# install.packages("ggplot2")
|
||||
library(ggplot2)
|
||||
library(plotly)
|
||||
countries = c( 'PL', 'DE', 'CZ', 'NL', 'RO', 'XD')
|
||||
|
||||
countries <- unique(map_df$geo)
|
||||
countries = c( 'PL', 'DE', 'CZ', 'NL', 'RO')
|
||||
countries = unique(SHP_28$geo)
|
||||
|
||||
df = read.csv(".//data//prc_hicp_aind_page_linear.csv")
|
||||
df[,c("geo", "TIME_PERIOD", "OBS_VALUE")]
|
||||
@ -51,7 +50,7 @@ ggplot(year_country_gdp, aes(x = TIME_PERIOD, y = OBS_VALUE, color = geo, label
|
||||
|
||||
plot <- ggplot(year_country_gdp, aes(x = TIME_PERIOD, y = OBS_VALUE, color = geo, text = paste("Kraj: ", geo, "<br>",
|
||||
"Rok: ", TIME_PERIOD, "<br>",
|
||||
"Warto?? wska?nika: ", OBS_VALUE))) +
|
||||
"Wartoœæ wskaŸnika: ", OBS_VALUE))) +
|
||||
geom_line(aes(group = geo)) +
|
||||
geom_point() +
|
||||
labs(x = "Rok", y = 'PKB per capita w PPP [PPS_EU27_2020=100]') +
|
||||
@ -86,15 +85,15 @@ ggplot(house_price_index, aes(x = TIME_PERIOD, y = OBS_VALUE, color = geo, label
|
||||
slice(n() - 1),
|
||||
aes(label = geo, hjust = -1, size = 4))+
|
||||
scale_x_continuous(breaks=seq(2010,2024,2))
|
||||
labs(x = "Rok", y = 'Indeks Cen nieruchomo?ci [cena z 2015 roku = 100]')
|
||||
labs(x = "Rok", y = 'Indeks Cen nieruchomoœci [cena z 2015 roku = 100]')
|
||||
|
||||
plot <- ggplot(house_price_index, aes(x = TIME_PERIOD, y = OBS_VALUE, color = geo, text = paste("Kraj: ", geo, "<br>",
|
||||
"Rok: ", TIME_PERIOD, "<br>",
|
||||
"Warto?? wska?nika: ", OBS_VALUE))) +
|
||||
"Wartoœæ wskaŸnika: ", OBS_VALUE))) +
|
||||
geom_line() +
|
||||
geom_point() +
|
||||
scale_x_continuous(breaks = seq(2010, 2024, 2)) +
|
||||
labs(x = "Rok", y = 'Indeks Cen nieruchomo?ci [cena z 2015 roku = 100]')
|
||||
labs(x = "Rok", y = 'Indeks Cen nieruchomoœci [cena z 2015 roku = 100]')
|
||||
plotly_plot <- ggplotly(plot, tooltip = "text")
|
||||
for (i in 1:length(plotly_plot$x$data)) {
|
||||
if (plotly_plot$x$data[[i]]$type == "scatter") {
|
||||
@ -133,7 +132,7 @@ ggplot(hicp_index, aes(x = TIME_PERIOD, y = OBS_VALUE, color = geo, label = geo)
|
||||
|
||||
plot <- ggplot(hicp_index, aes(x = TIME_PERIOD, y = OBS_VALUE, color = geo, text = paste("Kraj: ", geo, "<br>",
|
||||
"Rok: ", TIME_PERIOD, "<br>",
|
||||
"Warto?? wska?nika: ", OBS_VALUE))) +
|
||||
"Wartoœæ wskaŸnika: ", OBS_VALUE))) +
|
||||
geom_line() +
|
||||
geom_point() +
|
||||
labs(x = "Rok", y = 'Indeks inflacji konsumenckiej HICP [2015 = 100]') +
|
||||
@ -174,12 +173,8 @@ merged_df %>% group_by(geo) %>% str()
|
||||
|
||||
str(merged_df)
|
||||
|
||||
unfiltered_df <- merged_df
|
||||
merged_df <- filter(merged_df, geo %in% countries)
|
||||
|
||||
|
||||
|
||||
|
||||
ggplot(merged_df, aes(x = TIME_PERIOD, y = house_prices_wo_hicp, color = geo)) +
|
||||
geom_line(linetype="dotted", size=1) +
|
||||
geom_point(aes(x=TIME_PERIOD, y=house_prices_wo_hicp)) +
|
||||
@ -190,12 +185,12 @@ ggplot(merged_df, aes(x = TIME_PERIOD, y = house_prices_wo_hicp, color = geo)) +
|
||||
stat_function(fun=function(x) 100*(1.04)^(x-2015), aes(colour = "4% Compounding")) +
|
||||
stat_function(fun=function(x) 100*(1.07)^(x-2015), aes(colour = "7% Compounding")) +
|
||||
scale_x_continuous(breaks=seq(2010,2024,2)) +
|
||||
labs(x = "Year", y = 'Indeks cen nieruchomo?ci zdyskontowany o warto?? inflacji [2015 = 100]')
|
||||
labs(x = "Year", y = 'Indeks cen nieruchomoœci zdyskontowany o wartoœæ inflacji [2015 = 100]')
|
||||
|
||||
|
||||
final_plot <- ggplot(merged_df, aes(x = TIME_PERIOD, y = house_prices_wo_hicp, color = geo,
|
||||
text = paste("Kraj: ", geo, "<br>", "Rok: ", TIME_PERIOD, "<br>",
|
||||
"Cena nieruchomo?ci: ", house_prices_wo_hicp))) +
|
||||
"Cena nieruchomoœci: ", house_prices_wo_hicp))) +
|
||||
geom_line(aes(group = geo), linetype = "dotted", size = 1) +
|
||||
geom_point() +
|
||||
geom_text(data = merged_df %>% group_by(geo) %>% slice(n()),
|
||||
@ -203,7 +198,7 @@ final_plot <- ggplot(merged_df, aes(x = TIME_PERIOD, y = house_prices_wo_hicp, c
|
||||
stat_function(fun = function(x) 100*(1.04)^(x-2015), aes(colour = "4% Compounding"), inherit.aes = FALSE) +
|
||||
stat_function(fun = function(x) 100*(1.07)^(x-2015), aes(colour = "7% Compounding"), inherit.aes = FALSE) +
|
||||
scale_x_continuous(breaks = seq(2010, 2024, 2)) +
|
||||
labs(x = "Rok", y = "Indeks cen nieruchomości zdyskontowany o wartość inflacji [2015 = 100]")
|
||||
labs(x = "Rok", y = "Indeks cen nieruchomoœci zdyskontowany o wartoœæ inflacji [2015 = 100]")
|
||||
|
||||
final_plot
|
||||
|
||||
|
@ -40,6 +40,8 @@ SHP_28 %>%
|
||||
# Join datasets
|
||||
|
||||
mapdata_new <- left_join(SHP_28, map_df, by="geo", relationship = "many-to-many")
|
||||
merged_df <- left_join(SHP_28, merged_df, by="geo", relationship = "many-to-many")
|
||||
merged_df
|
||||
|
||||
# Delete Greece (null values)
|
||||
mapdata_new <- mapdata_new[-9,]
|
||||
|
62
webapp.R
62
webapp.R
@ -12,12 +12,18 @@ ui <- fluidPage(
|
||||
sliderInput("range", "Compound interest:",min = 0, max = 10, value = c(4,8)),textOutput("Compound interest slider"),
|
||||
|
||||
# Checkboxes
|
||||
# tags$head(tags$style(HTML(".checkbox {margin-left:15px}"))),
|
||||
checkboxGroupInput("countries", "Chosen countries:",
|
||||
choiceNames = unique(map_df$geo),
|
||||
choiceValues = unique(map_df$geo),
|
||||
selected = c("PL", "DE", "CZ")
|
||||
choiceNames = map_df$region,
|
||||
choiceValues = map_df$geo,
|
||||
selected = c("PL", "DE", "CZ"),
|
||||
inline = TRUE,
|
||||
width = "75%"
|
||||
),
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
width=3
|
||||
),
|
||||
@ -26,7 +32,7 @@ ui <- fluidPage(
|
||||
h1("Real house prices index"),
|
||||
|
||||
tabsetPanel(
|
||||
tabPanel("Plot", plotOutput("final_plot")),
|
||||
tabPanel("Plot", plotlyOutput("final_plot")),
|
||||
tabPanel("Map", leafletOutput("mymap")),
|
||||
tabPanel("Table", dataTableOutput('table'))
|
||||
),
|
||||
@ -43,38 +49,42 @@ ui <- fluidPage(
|
||||
|
||||
# Backend
|
||||
server <- function(input, output, session) {
|
||||
|
||||
output$table <- renderDataTable({
|
||||
merged_df[, !names(merged_df) %in% c("OBS_VALUE.x", "OBS_VALUE.y", "geometry")]
|
||||
}, options = list(pageLength = 10))
|
||||
|
||||
# Używanie wektora indeksu do indeksowania innych danych
|
||||
output$table <- renderDataTable(merged_df[,!names(merged_df) %in% c("OBS_VALUE.x", "OBS_VALUE.y")])
|
||||
|
||||
# Plot module
|
||||
output$final_plot <- renderPlot({
|
||||
|
||||
# final_plot <-
|
||||
ggplot(filter(merged_df, geo %in% input$countries), aes(x = TIME_PERIOD, y = house_prices_wo_hicp, color = geo,
|
||||
text = paste("Kraj: ", geo, "<br>", "Rok: ", TIME_PERIOD, "<br>",
|
||||
"Cena nieruchomości: ", house_prices_wo_hicp))) +
|
||||
output$final_plot <- renderPlotly({
|
||||
final_plot <- ggplot(filter(merged_df, geo %in% input$countries),
|
||||
aes(x = TIME_PERIOD, y = house_prices_wo_hicp, color = geo,
|
||||
text = paste("Kraj: ", geo, "<br>", "Rok: ", TIME_PERIOD, "<br>",
|
||||
"Cena nieruchomości: ", house_prices_wo_hicp))) +
|
||||
geom_line(aes(group = geo), linetype = "dotted", size = 1) +
|
||||
geom_point() +
|
||||
geom_text(data = merged_df %>% group_by(geo) %>% slice(n()),
|
||||
geom_text(data = filter(merged_df, geo %in% input$countries) %>% group_by(geo) %>% slice(n()),
|
||||
aes(label = "", hjust = -0.2, size = 4)) +
|
||||
stat_function(fun = function(x) 100*(1+input$range[1]/100)^(x-2015), aes(colour = "4% Compounding"), inherit.aes = FALSE) +
|
||||
stat_function(fun = function(x) 100*(1+input$range[2]/100)^(x-2015), aes(colour = "7% Compounding"), inherit.aes = FALSE) +
|
||||
stat_function(fun = function(x) 100*(1+input$range[1]/100)^(x-2015), aes(colour = paste0(as.character(input$range[1]), "% Compounding")), inherit.aes = FALSE) +
|
||||
stat_function(fun = function(x) 100*(1+input$range[2]/100)^(x-2015), aes(colour = paste0(as.character(input$range[2]), "% Compounding")), inherit.aes = FALSE) +
|
||||
scale_x_continuous(breaks = seq(2010, 2024, 2)) +
|
||||
# labs(x = "Rok", y = "Indeks cen nieruchomości zdyskontowany o wartość inflacji [2015 = 100]") +
|
||||
theme( axis.title = element_blank() )
|
||||
labs(x = "Rok", y = "Indeks cen nieruchomości zdyskontowany o wartość inflacji [2015 = 100]",
|
||||
color = "Countries") +
|
||||
theme(axis.title = element_blank())
|
||||
|
||||
# ggplotly(final_plot, tooltip = "text")
|
||||
plotly_plot <- ggplotly(final_plot, tooltip = "text")
|
||||
|
||||
#for (i in 1:length(plotly_plot$x$data)) {
|
||||
# if (plotly_plot$x$data[[i]]$name == "4% Compounding" || plotly_plot$x$data[[i]]$name == "7% Compounding") {
|
||||
# plotly_plot$x$data[[i]]$hoverinfo <- "name+y"
|
||||
# }
|
||||
#}
|
||||
for (i in 1:length(plotly_plot$x$data)) {
|
||||
if (plotly_plot$x$data[[i]]$name == paste0(as.character(input$range[1]), "% Compounding") || plotly_plot$x$data[[i]]$name == paste0(as.character(input$range[1]), "% Compounding")) {
|
||||
plotly_plot$x$data[[i]]$hoverinfo <- "name+y"
|
||||
}
|
||||
}
|
||||
|
||||
#plotly_plot
|
||||
|
||||
})
|
||||
plotly_plot %>% layout(showlegend = TRUE, legend = list(title = list(text = "Countries")))
|
||||
})
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# Map module
|
||||
|
Loading…
Reference in New Issue
Block a user