library(dplyr) # install.packages("ggplot2") library(ggplot2) countries = c( 'PL', 'DE', 'CZ', 'NL', 'RO') df = read.csv(".//data//prc_hicp_aind_page_linear.csv") df[,c("geo", "TIME_PERIOD", "OBS_VALUE")] df1 = read.csv(".//data//prc_hpi_a__custom_3617733_page_linear.csv") df1[,c("geo", "TIME_PERIOD", "OBS_VALUE")] colnames(df1) df2 = read.csv(".//data//sdg_08_10_page_linear.csv") df2[,c("geo", "TIME_PERIOD", "OBS_VALUE")] colnames(df2) df3 = read.csv(".//data//tec00114_page_linear.csv") df3[,c("geo", "TIME_PERIOD", "OBS_VALUE")] colnames(df3) print(df3) # ################################################## # Single Country GDP graph year_country_gdp <- df3 %>% select( TIME_PERIOD, geo, OBS_VALUE) year_country_gdp <- na.omit(year_country_gdp) colnames(year_country_gdp) df3 %>% group_by(geo) %>% str() str(year_country_gdp) year_country_gdp <- filter(year_country_gdp, geo %in% countries) # Plot ggplot(year_country_gdp, aes(x = TIME_PERIOD, y = OBS_VALUE, color = geo, label = geo)) + geom_line() + geom_point() + geom_text(aes(label = geo), hjust = -0.1, size = 3)+ labs(x = "Rok", y = 'PKB per capita w PPP [PPS_EU27_2020=100]') + scale_x_continuous(breaks=seq(2010,2024,2)) year_country_gdp # ################################################## # House price index HPI df1 house_price_index <- df1 %>% select( TIME_PERIOD, geo, OBS_VALUE) house_price_index <- na.omit(house_price_index) colnames(house_price_index) df1 %>% group_by(geo) %>% str() str(house_price_index) house_price_index <- filter(house_price_index, geo %in% countries) # Plot ggplot(house_price_index, aes(x = TIME_PERIOD, y = OBS_VALUE, color = geo, label = geo)) + geom_line() + geom_point() + geom_text(data = house_price_index %>% group_by(geo) %>% slice(n() - 1), aes(label = geo, hjust = -1, size = 4))+ scale_x_continuous(breaks=seq(2010,2024,2)) labs(x = "Rok", y = 'Indeks Cen nieruchomości [cena z 2015 roku = 100]') house_price_index # ###################################### # HICP - Harmonised Index for Consumer Prices df hicp_index <- df %>% select( TIME_PERIOD, geo, OBS_VALUE) hicp_index <- na.omit(hicp_index) colnames(hicp_index) df %>% group_by(geo) %>% str() str(hicp_index) hicp_index <- filter(hicp_index, geo %in% countries) # Plot ggplot(hicp_index, aes(x = TIME_PERIOD, y = OBS_VALUE, color = geo, label = geo)) + geom_line() + geom_point() + geom_text(data = hicp_index %>% group_by(geo) %>% slice(n()), aes(label = geo, hjust = -0.2, size = 4)) + labs(x = "Rok", y = 'Indeks inflacji konsumenckiej HICP [2015 = 100]') + scale_x_continuous(breaks=seq(2010,2024,2)) hicp_index # ######################## # Show data discounting inflation rate # Merge the two data frames using the 'country' and 'date' columns merged_df <- merge(house_price_index, hicp_index, by = c("geo", "TIME_PERIOD")) merged_df # Create a new column that divides 'value1' by 'value2' merged_df$house_prices_wo_hicp <- merged_df$OBS_VALUE.x / merged_df$OBS_VALUE.y*100 merged_df$TIME_PERIOD merged_df$compound_growth <- 1 * (1 + 0.02) ^ (1:(merged_df$TIME_PERIOD-2015)) # View the resulting merged data frame with the divided values merged_df merged_df <- na.omit(merged_df) colnames(merged_df) merged_df %>% group_by(geo) %>% str() str(merged_df) merged_df <- filter(merged_df, geo %in% countries) # Plot ggplot(merged_df, aes(x = TIME_PERIOD, y = house_prices_wo_hicp, color = geo)) + geom_line(linetype="dotted", size=1) + geom_point(aes(x=TIME_PERIOD, y=house_prices_wo_hicp)) + geom_text(data = merged_df %>% group_by(geo) %>% slice(n()), aes(label = geo, hjust = -0.2, size = 4)) + stat_function(fun=function(x) 100*(1.04)^(x-2015), aes(colour = "4% Compounding")) + stat_function(fun=function(x) 100*(1.07)^(x-2015), aes(colour = "7% Compounding")) + scale_x_continuous(breaks=seq(2010,2024,2)) + labs(x = "Year", y = 'Indeks cen nieruchomości zdyskontowany o wartość inflacji [2015 = 100]')