39 lines
1.4 KiB
Plaintext
39 lines
1.4 KiB
Plaintext
library(dplyr)
|
|
library(tidyverse)
|
|
# install.packages("colorRamps")
|
|
library(ggplot2)
|
|
library(colorRamps)
|
|
# countries = c( 'PL', 'DE', 'CZ', 'NL', 'RO')
|
|
|
|
map_df = read.csv(".//data//compound_interest_housing.csv")
|
|
map_df
|
|
|
|
ggplot(map_df, aes(x = TIME_PERIOD, y = compound_interest, color = geo)) +
|
|
geom_point(aes(x=TIME_PERIOD, y=compound_interest)) +
|
|
geom_text(data = map_df %>%
|
|
group_by(geo) %>%
|
|
slice(n()),
|
|
aes(label = geo, hjust = -0.2, size = 4)) +
|
|
scale_x_continuous(breaks=seq(2010,2024,2)) +
|
|
labs(x = "Year", y = 'wartość mieszkania jako % składany powyżej inflacji')
|
|
|
|
|
|
# filter data to have both coordinates and value
|
|
geo_list <- c("Belarus", "Greece", "Latvia", "Albania",
|
|
"Switzerland", "Bosnia and Herzegovina", "Ukraine",
|
|
"UK", "Turkey", "Serbia", "Kosovo", "Moldova", "North Macedonia",
|
|
"Montenegro", "cyprus", "Malta")
|
|
|
|
mapdata <- map_data("world")
|
|
mapdata1 <- left_join(mapdata, map_df, by="region", relationship = "many-to-many")
|
|
mapdata2 <- mapdata1 %>% filter(!is.na(mapdata1$compound_interest)| mapdata1$region %in% geo_list)
|
|
|
|
mapdata2
|
|
|
|
map1 <- ggplot(mapdata2, aes(x = long, y = lat, group = group)) +
|
|
geom_polygon(aes(fill = compound_interest), color = "black") +
|
|
scale_fill_gradient(name="compound interest", low = "white", high = "black", na.value = "yellow")
|
|
|
|
map1
|
|
|