2
0
forked from s444420/AL-2020
AL-2020/coder/rocognizer.py

65 lines
2.0 KiB
Python
Raw Normal View History

2020-05-20 11:45:55 +02:00
import cv2
import matplotlib.pyplot as plt
2020-05-30 15:52:48 +02:00
import torch
2020-06-01 00:21:32 +02:00
from PIL.Image import Image
from torch import nn
from torchvision.transforms import transforms
2020-05-20 11:45:55 +02:00
2020-06-01 00:21:32 +02:00
def white_bg_square(img):
"return a white-background-color image having the img in exact center"
size = (max(img.size),)*2
layer = Image.new('RGB', size, (255, 255, 255))
layer.paste(img, tuple(map(lambda x:(x[0]-x[1])/2, zip(size, img.size))))
return layer
code = []
2020-06-01 00:21:32 +02:00
path = "test5.jpg"
2020-05-20 11:45:55 +02:00
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,)),
])
2020-05-30 15:52:48 +02:00
img = cv2.imread(path)
2020-05-20 11:45:55 +02:00
2020-05-30 15:52:48 +02:00
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_gray = cv2.GaussianBlur(img_gray, (5, 5), 0)
2020-05-20 11:45:55 +02:00
2020-05-30 15:52:48 +02:00
ret, im_th = cv2.threshold(img_gray, 90, 255, cv2.THRESH_BINARY_INV)
2020-05-20 11:45:55 +02:00
2020-05-30 15:52:48 +02:00
ctrs, hier = cv2.findContours(im_th.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
2020-05-20 11:45:55 +02:00
2020-05-30 15:52:48 +02:00
rects = [cv2.boundingRect(ctr) for ctr in ctrs]
2020-05-20 11:45:55 +02:00
# load nn model
input_size = 784 # = 28*28
hidden_sizes = [128, 128, 64]
output_size = 10
model = nn.Sequential(nn.Linear(input_size, hidden_sizes[0]),
nn.ReLU(),
nn.Linear(hidden_sizes[0], hidden_sizes[1]),
nn.ReLU(),
nn.Linear(hidden_sizes[1], hidden_sizes[2]),
nn.ReLU(),
nn.Linear(hidden_sizes[2], output_size),
nn.LogSoftmax(dim=-1))
model.load_state_dict(torch.load('digit_reco_model2.pt'))
model.eval()
2020-05-30 15:52:48 +02:00
for rect in rects:
# Crop image
2020-06-01 00:21:32 +02:00
crop_img = img[rect[1]:rect[1] + rect[3] + 10, rect[0]:rect[0] + rect[2] + 10, 0]
2020-05-30 15:52:48 +02:00
# Resize the image
2020-06-01 00:21:32 +02:00
roi = cv2.resize(crop_img, (28, 28), interpolation=cv2.INTER_LINEAR)
roi = cv2.dilate(roi, (3, 3))
plt.imshow(roi)
plt.show()
2020-06-01 00:21:32 +02:00
im = transform(roi)
im = im.view(1, 784)
with torch.no_grad():
2020-06-01 00:21:32 +02:00
logps = model(im.float())
ps = torch.exp(logps)
probab = list(ps.numpy()[0])
print("Predicted Digit =", probab.index(max(probab)))
2020-06-01 00:21:32 +02:00
cv2.imshow("Code", img)
2020-05-30 15:52:48 +02:00
cv2.waitKey()