forked from s444420/AL-2020
new dataset
This commit is contained in:
parent
d07d2ce137
commit
239eaf7d97
@ -19,7 +19,9 @@
|
||||
<select />
|
||||
</component>
|
||||
<component name="ChangeListManager">
|
||||
<list default="true" id="828778c9-9d97-422f-a727-18ddbd059b85" name="Default Changelist" comment="finding barcode">
|
||||
<list default="true" id="828778c9-9d97-422f-a727-18ddbd059b85" name="Default Changelist" comment="po">
|
||||
<change afterPath="$PROJECT_DIR$/coder/dataset/test.csv" afterDir="false" />
|
||||
<change afterPath="$PROJECT_DIR$/coder/dataset/train.csv" afterDir="false" />
|
||||
<change beforePath="$PROJECT_DIR$/.idea/workspace.xml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/workspace.xml" afterDir="false" />
|
||||
<change beforePath="$PROJECT_DIR$/coder/image.py" beforeDir="false" afterPath="$PROJECT_DIR$/coder/image.py" afterDir="false" />
|
||||
</list>
|
||||
@ -70,16 +72,17 @@
|
||||
<property name="RunOnceActivity.ShowReadmeOnStart" value="true" />
|
||||
<property name="SHARE_PROJECT_CONFIGURATION_FILES" value="true" />
|
||||
<property name="WebServerToolWindowFactoryState" value="false" />
|
||||
<property name="last_opened_file_path" value="$PROJECT_DIR$/coder" />
|
||||
<property name="last_opened_file_path" value="$PROJECT_DIR$/coder/dataset" />
|
||||
<property name="restartRequiresConfirmation" value="false" />
|
||||
<property name="settings.editor.selected.configurable" value="com.jetbrains.python.configuration.PyActiveSdkModuleConfigurable" />
|
||||
</component>
|
||||
<component name="RecentsManager">
|
||||
<key name="CopyFile.RECENT_KEYS">
|
||||
<recent name="C:\Users\Pawel Lukaszewicz\PycharmProjects\AL-2020\coder\dataset" />
|
||||
<recent name="C:\Users\Pawel Lukaszewicz\PycharmProjects\AL-2020\coder" />
|
||||
</key>
|
||||
</component>
|
||||
<component name="RunManager" selected="Python.rocognizer">
|
||||
<component name="RunManager" selected="Python.image">
|
||||
<configuration default="true" type="PythonConfigurationType" factoryName="Python">
|
||||
<module name="wozek" />
|
||||
<option name="INTERPRETER_OPTIONS" value="" />
|
||||
@ -169,6 +172,9 @@
|
||||
<module name="wozek" />
|
||||
<option name="INTERPRETER_OPTIONS" value="" />
|
||||
<option name="PARENT_ENVS" value="true" />
|
||||
<envs>
|
||||
<env name="PYTHONUNBUFFERED" value="1" />
|
||||
</envs>
|
||||
<option name="SDK_HOME" value="" />
|
||||
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$/coder" />
|
||||
<option name="IS_MODULE_SDK" value="true" />
|
||||
@ -188,6 +194,9 @@
|
||||
<module name="wozek" />
|
||||
<option name="INTERPRETER_OPTIONS" value="" />
|
||||
<option name="PARENT_ENVS" value="true" />
|
||||
<envs>
|
||||
<env name="PYTHONUNBUFFERED" value="1" />
|
||||
</envs>
|
||||
<option name="SDK_HOME" value="" />
|
||||
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$/coder" />
|
||||
<option name="IS_MODULE_SDK" value="true" />
|
||||
@ -204,16 +213,16 @@
|
||||
<method v="2" />
|
||||
</configuration>
|
||||
<list>
|
||||
<item itemvalue="Python.image" />
|
||||
<item itemvalue="Python.main" />
|
||||
<item itemvalue="Python.feature_hashing" />
|
||||
<item itemvalue="Python.train_nn" />
|
||||
<item itemvalue="Python.load_image" />
|
||||
<item itemvalue="Python.rocognizer" />
|
||||
</list>
|
||||
<recent_temporary>
|
||||
<list>
|
||||
<item itemvalue="Python.image" />
|
||||
<item itemvalue="Python.rocognizer" />
|
||||
<item itemvalue="Python.load_image" />
|
||||
<item itemvalue="Python.train_nn" />
|
||||
<item itemvalue="Python.main" />
|
||||
<item itemvalue="Python.feature_hashing" />
|
||||
@ -242,7 +251,12 @@
|
||||
<workItem from="1589814601057" duration="4208000" />
|
||||
<workItem from="1589844260514" duration="777000" />
|
||||
<workItem from="1589845066174" duration="177000" />
|
||||
<workItem from="1589888090669" duration="27074000" />
|
||||
<workItem from="1589888090669" duration="27128000" />
|
||||
<workItem from="1590140903263" duration="211000" />
|
||||
<workItem from="1590179245978" duration="6655000" />
|
||||
<workItem from="1590230578314" duration="1895000" />
|
||||
<workItem from="1590235510565" duration="925000" />
|
||||
<workItem from="1590340739871" duration="8052000" />
|
||||
</task>
|
||||
<task id="LOCAL-00001" summary="create Shelf">
|
||||
<created>1589815443652</created>
|
||||
@ -307,7 +321,14 @@
|
||||
<option name="project" value="LOCAL" />
|
||||
<updated>1589967955430</updated>
|
||||
</task>
|
||||
<option name="localTasksCounter" value="10" />
|
||||
<task id="LOCAL-00010" summary="po">
|
||||
<created>1589972251988</created>
|
||||
<option name="number" value="00010" />
|
||||
<option name="presentableId" value="LOCAL-00010" />
|
||||
<option name="project" value="LOCAL" />
|
||||
<updated>1589972251988</updated>
|
||||
</task>
|
||||
<option name="localTasksCounter" value="11" />
|
||||
<servers />
|
||||
</component>
|
||||
<component name="TypeScriptGeneratedFilesManager">
|
||||
@ -336,7 +357,8 @@
|
||||
<MESSAGE value="recognizing but training must be improved" />
|
||||
<MESSAGE value="zwiekszenie dokladnosci" />
|
||||
<MESSAGE value="finding barcode" />
|
||||
<option name="LAST_COMMIT_MESSAGE" value="finding barcode" />
|
||||
<MESSAGE value="po" />
|
||||
<option name="LAST_COMMIT_MESSAGE" value="po" />
|
||||
</component>
|
||||
<component name="WindowStateProjectService">
|
||||
<state x="115" y="162" key="#com.intellij.refactoring.safeDelete.UnsafeUsagesDialog" timestamp="1589923610328">
|
||||
@ -363,10 +385,10 @@
|
||||
<screen x="0" y="0" width="1536" height="824" />
|
||||
</state>
|
||||
<state x="277" y="57" key="SettingsEditor/0.0.1536.824@0.0.1536.824" timestamp="1589845139218" />
|
||||
<state x="361" y="145" key="Vcs.Push.Dialog.v2" timestamp="1589955889829">
|
||||
<state x="361" y="145" key="Vcs.Push.Dialog.v2" timestamp="1589972275899">
|
||||
<screen x="0" y="0" width="1536" height="824" />
|
||||
</state>
|
||||
<state x="361" y="145" key="Vcs.Push.Dialog.v2/0.0.1536.824@0.0.1536.824" timestamp="1589955889829" />
|
||||
<state x="361" y="145" key="Vcs.Push.Dialog.v2/0.0.1536.824@0.0.1536.824" timestamp="1589972275899" />
|
||||
<state x="54" y="145" width="672" height="678" key="search.everywhere.popup" timestamp="1589918982407">
|
||||
<screen x="0" y="0" width="1536" height="824" />
|
||||
</state>
|
||||
|
28001
coder/dataset/test.csv
Normal file
28001
coder/dataset/test.csv
Normal file
File diff suppressed because one or more lines are too long
42001
coder/dataset/train.csv
Normal file
42001
coder/dataset/train.csv
Normal file
File diff suppressed because one or more lines are too long
@ -4,37 +4,55 @@ import matplotlib.pyplot as plt
|
||||
from sklearn import datasets
|
||||
from sklearn.metrics import accuracy_score
|
||||
from sklearn.neural_network import MLPClassifier
|
||||
import pandas as pd
|
||||
import cv2
|
||||
|
||||
#28x28
|
||||
train_data = np.genfromtxt('dataset/train.csv', delimiter=',', skip_header=1 ,max_rows=20000, encoding='utf-8')
|
||||
test_data = np.genfromtxt('dataset/test.csv', delimiter=',' , skip_header=1, max_rows=20000, encoding='utf-8')
|
||||
|
||||
|
||||
|
||||
# training
|
||||
# recznie napisane cyfry
|
||||
digits = datasets.load_digits()
|
||||
|
||||
digits = datasets.load_digits()
|
||||
y = digits.target
|
||||
x = digits.images.reshape((len(digits.images), -1))
|
||||
|
||||
|
||||
#ogarnac zbior, zwiekszyc warstwy
|
||||
|
||||
x_train = x[:1000000]
|
||||
y_train = y[:1000000]
|
||||
x_test = x[1000000:]
|
||||
y_test = y[1000000:]
|
||||
x_train = train_data[0:20000, 1:]
|
||||
y_train = train_data[0:20000, 0]
|
||||
x_test = test_data[0:20000]
|
||||
y_test = test_data[0:20000, 0]
|
||||
|
||||
mlp = MLPClassifier(hidden_layer_sizes=(15,), activation='logistic', alpha=1e-4,
|
||||
solver='sgd', tol=1e-4, random_state=1,
|
||||
learning_rate_init=.1, verbose=True)
|
||||
# x_train = x[:900]
|
||||
# y_train = y[:900]
|
||||
# x_test = x[900:]
|
||||
# y_test = y[900:]
|
||||
|
||||
print(x_test[0].shape, y_test[9].shape)
|
||||
|
||||
mlp = MLPClassifier(hidden_layer_sizes=(100, 100, 100, 100), activation='logistic', alpha=1e-4,
|
||||
solver='sgd', tol=0.000000000001, random_state=1,
|
||||
learning_rate_init=.1, verbose=True, max_iter=1000)
|
||||
|
||||
mlp.fit(x_train, y_train)
|
||||
|
||||
print(123456789)
|
||||
predictions = mlp.predict(x_test)
|
||||
print(accuracy_score(y_test, predictions))
|
||||
print(123456789)
|
||||
|
||||
print("Accuracy: ", accuracy_score(y_test, predictions))
|
||||
|
||||
|
||||
# image
|
||||
|
||||
img = cv2.cvtColor(cv2.imread('test3.png'), cv2.COLOR_BGR2GRAY)
|
||||
img = cv2.cvtColor(cv2.imread('test5.jpg'), cv2.COLOR_BGR2GRAY)
|
||||
img = cv2.blur(img, (9, 9)) # poprawia jakosc
|
||||
img = cv2.resize(img, (8, 8), interpolation=cv2.INTER_AREA)
|
||||
img = cv2.resize(img, (28, 28), interpolation=cv2.INTER_AREA)
|
||||
img = img.reshape((len(img), -1))
|
||||
|
||||
print(type(img))
|
||||
print(img.shape)
|
||||
@ -61,4 +79,3 @@ print(data)
|
||||
predictions = mlp.predict([data])
|
||||
|
||||
print("Liczba to:", predictions[0])
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user