forked from s444420/AL-2020
21 lines
671 B
Python
21 lines
671 B
Python
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
|
|
class Net(nn.Module):
|
|
def __init__(self):
|
|
super(Net, self).__init__()
|
|
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
|
|
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
|
|
self.conv2_drop = nn.Dropout2d()
|
|
self.fc1 = nn.Linear(320, 50)
|
|
self.fc2 = nn.Linear(50, 10)
|
|
|
|
def forward(self, x):
|
|
x = F.relu(F.max_pool2d(self.conv1(x), 2))
|
|
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
|
|
x = x.view(-1, 320)
|
|
x = F.relu(self.fc1(x))
|
|
x = F.dropout(x, training=self.training)
|
|
x = self.fc2(x)
|
|
return F.log_softmax(x) |