2
0
forked from s444420/AL-2020
AL-2020/main.py
2020-06-09 18:28:38 +02:00

111 lines
3.9 KiB
Python

import pygame
import functions
import sys
import time
import decision_tree
import data
from agent import Agent
from settings import Settings
from board import create_board, draw_board, get_shelfs
from random import randint, choice
from mcda import selectedSupply
from product import FinalProduct
from coder import create_image
# Inicjalizacja programu i utworzenie obiektu ekrany
def run():
pygame.init()
settings = Settings()
screen = pygame.display.set_mode((settings.screen_width, settings.screen_height))
pygame.display.set_caption("Inteligentny wózek widłowy")
agent = Agent(screen, 550, 450, "Down")
board = create_board(screen)
my_tree = decision_tree.build_tree(data.learning_data)
products_from_supply = []
supply_depot = board[9][0]
path = []
next_step = None
# Rozpoczęcie głównej pętli programu
while True:
# functions.check_events(agent, board)
# functions.update_screen(board, screen, agent)
#
for event in pygame.event.get():
if event.type == pygame.QUIT:
sys.exit()
elif event.type == pygame.KEYDOWN:
if event.key == pygame.K_RIGHT:
agent.turn_right()
elif event.key == pygame.K_LEFT:
agent.turn_left()
elif event.key == pygame.K_UP:
agent.move_forward(board)
elif event.key == pygame.K_DOWN:
agent.item = None
agent.is_busy = False
elif event.key == pygame.K_SPACE:
products_from_supply = selectedSupply()
# print("Wybrano: " + board[9][0].item[-1])
# field = board[9][0]
# if not field.is_shelf:
# path = functions.a_star(board[agent.y][agent.x], field, board)
# path.pop(len(path) - 1)
# next_step = path.pop(len(path) - 1)
if len(products_from_supply) != 0 and supply_depot.is_empty is True and agent.is_busy is False:
supply_depot.item = products_from_supply.pop(0)
print(supply_depot.item)
path = functions.a_star(board[agent.y][agent.x], supply_depot, board)
path.pop(len(path) - 1)
next_step = path.pop(len(path) - 1)
agent.is_busy = True
if board[agent.y][agent.x].item and agent.item is None:
prediction = decision_tree.print_leaf(decision_tree.classify(board[agent.y][agent.x].item, my_tree))
print("Agent uważa, że przedmiot to: " + prediction[0])
new_product = FinalProduct(supply_depot.item[0], supply_depot.item[1], supply_depot.item[2],
supply_depot.item[3], prediction[0])
print(new_product)
'''
Wyznacza patha do polki na ktora ma polozyc produkt.
'''
# list [x, y]
dest_shelf = new_product.shelf()
dest_field = board[dest_shelf[0], dest_shelf[1]]
path = functions.a_star(board[agent.y][agent.x], dest_field, board)
''''''
agent.item = new_product
if next_step is not None:
time.sleep(0.5)
if functions.check_turn(agent, next_step):
agent.move_forward(board)
if len(path) != 0:
next_step = path.pop()
else:
next_step = None
# print(next_step, path)
for row in board:
for field in row:
if not field.is_shelf:
field.image = pygame.image.load('img/Field.png')
else:
functions.change_turn(agent, next_step)
draw_board(board)
agent.blitme()
pygame.display.flip()
run()