AIProjekt/decisiontree.py

60 lines
1.4 KiB
Python
Raw Normal View History

2020-06-09 15:59:02 +02:00
import pandas as pd
#NIE AKTULAIZOWAĆ scikit / sklearn
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree.export import export_text
from sklearn.tree import export_graphviz
def decision(plant,feed,growth,dryness):
# czytanie pliku csv
2020-06-09 22:06:04 +02:00
df = pd.read_csv("data/data.csv")
2020-06-09 15:59:02 +02:00
#print(df)
#zmiana słów na cyfry, ponieważ drzewo decyzyjne opiera się na cyfrach
z = {'CABBAGE': 2, 'PUMPKIN':4, 'CARROT':3, 'BEETROOT': 1}
df['PLANT'] = df['PLANT'].map(z)
d = {'NO': 0, 'YES': 1}
df['DEC'] = df['DEC'].map(d)
#print(df)
features_rest = ['PLANT','FEED','GROWTH','DRYNESS'] #dane, na których opiera się decyzja
features_dec = ['DEC'] #kolumna z decyją
X = df[features_rest]
y = df[features_dec]
#wyświetlkanie kolumn
#print(X)
#print(y)
#tworzenie drzewa
dtree = DecisionTreeClassifier()
#przypisanie danych
dtree = dtree.fit(X, y)
#eksport drzewa do tekstu
r = export_text(dtree, feature_names=features_rest)
#print("\nDrzewo decyzyjne\n")
#print(r)
a = dtree.predict([[plant,feed,growth,dryness]])
#return a
#print("\n[1] means FEED THE PLANT")
#print("[0] means NOT FEED THE PLANT\n")
print ("Decision for: ",plant,", feed: ", feed,", growth: ", growth,", dryness:", dryness," is ", a,"")
"""
plant = 1
feed = 35
growth = 20
#vermins = 0
dryness = 12
decision(plant,feed,growth,dryness)
"""