forked from s444426/AIProjekt
Merge branch 'master' of https://git.wmi.amu.edu.pl/s444426/AIProjekt
This commit is contained in:
commit
04612d5cf3
7
ID3.py
7
ID3.py
@ -1,7 +1,6 @@
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from pprint import pprint
|
||||
import dataset
|
||||
from data import dataset
|
||||
|
||||
training_data = pd.DataFrame(data=dataset.training_data, columns=dataset.header)
|
||||
testing_data = pd.DataFrame(data=dataset.testing_data, columns=dataset.header)
|
||||
@ -96,12 +95,12 @@ def ID3(data, original_data, features, target_attribute_name="label", parent_nod
|
||||
return (tree)
|
||||
|
||||
|
||||
def predict(query, tree, default='beetroot'):
|
||||
def predict(query, tree, default='none'):
|
||||
"""
|
||||
Przeszukiwanie drzewa w celu przewidzenia wartości atrybutu "label".
|
||||
W przypadku, gdy dane wejściowe nie pokrywają się z żadnymi wartościami w drzewie
|
||||
(np pH ziemi zostanie sklasyfikowane jako 'strongly acidic', a dane uczące nie obejmują rekordów dla takiej wartości),
|
||||
wówczas przewidywana zostaje wartość domyślna, w tym przypadku jest to burak jako warzywo o najmniejszych wymaganiach.
|
||||
wówczas przewidywana zostaje wartość domyślna.
|
||||
"""
|
||||
|
||||
for key in list(query.keys()):
|
||||
|
@ -1,157 +0,0 @@
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from pprint import pprint
|
||||
import dataset
|
||||
|
||||
training_data = pd.DataFrame(data=dataset.training_data, columns=dataset.header)
|
||||
testing_data = pd.DataFrame(data=dataset.testing_data, columns=dataset.header)
|
||||
|
||||
|
||||
def entropy(target_col):
|
||||
"""
|
||||
Obliczenie warości entropii dla wskazanej kolumny
|
||||
"""
|
||||
values, counts = np.unique(target_col, return_counts=True)
|
||||
entropy = np.sum(
|
||||
[(-counts[i] / np.sum(counts)) * np.log2(counts[i] / np.sum(counts)) for i in range(len(values))])
|
||||
return entropy
|
||||
|
||||
|
||||
def info_gain(data, split_attribute_name, target_name="label"):
|
||||
"""
|
||||
Obliczenie wartości przyrostu informacji dla wskazanego atrybutu (split_attribute_name)
|
||||
w podanym zbiorze (data)
|
||||
"""
|
||||
|
||||
# Wartość entropii zbioru
|
||||
total_entropy = entropy(data[target_name])
|
||||
|
||||
# Wyodrębnienie poszczególnych "podzbiorów"
|
||||
vals, counts = np.unique(data[split_attribute_name], return_counts=True)
|
||||
|
||||
# Średnia ważona entropii każdego podzbioru
|
||||
weighted_entropy = np.sum(
|
||||
[(counts[i] / np.sum(counts)) * entropy(data.where(data[split_attribute_name] == vals[i]).dropna()[target_name])
|
||||
for i in range(len(vals))])
|
||||
|
||||
# Przyrost informacji
|
||||
information_gain = total_entropy - weighted_entropy
|
||||
|
||||
return information_gain
|
||||
|
||||
|
||||
def ID3(data, original_data, features, target_attribute_name="label", parent_node_class=None):
|
||||
"""
|
||||
Algorytm ID3
|
||||
|
||||
parametry:
|
||||
data zbiór danych, dla którego poszukujemy drzewa decyzyjnego
|
||||
original_data oryginalny zbiór danych (zwracany gdy data == None)
|
||||
features lista atrybutów wejściowego zbioru
|
||||
target_attribute_name docelowy atrybut, który chcemy przewidzieć
|
||||
parent_node_class nadrzędna wartość
|
||||
"""
|
||||
|
||||
# Jeżeli wszystkie atrybuty są takie same, zwracamy liść z pierwszą napotkaną wartością
|
||||
|
||||
if len(np.unique(data[target_attribute_name])) <= 1:
|
||||
return np.unique(data[target_attribute_name])[0]
|
||||
|
||||
elif len(data) == 0:
|
||||
return np.unique(original_data[target_attribute_name])[
|
||||
np.argmax(np.unique(original_data[target_attribute_name], return_counts=True)[1])]
|
||||
|
||||
elif len(features) == 0:
|
||||
return parent_node_class
|
||||
|
||||
else:
|
||||
|
||||
# Aktualizacja nadrzędnej wartości
|
||||
parent_node_class = np.unique(data[target_attribute_name])[
|
||||
np.argmax(np.unique(data[target_attribute_name], return_counts=True)[1])]
|
||||
|
||||
# Obliczenie przyrostu informacji dla każdego potencjalnego atrybutu,
|
||||
# według którego nastąpi podział zbioru
|
||||
item_values = [info_gain(data, feature, target_attribute_name) for feature in
|
||||
features]
|
||||
|
||||
# Najlepszym atrybutem jest ten o największym przyroście informacji
|
||||
best_feature_index = np.argmax(item_values)
|
||||
best_feature = features[best_feature_index]
|
||||
|
||||
# Struktura drzewa
|
||||
tree = {best_feature: {}}
|
||||
|
||||
# Aktualizacja zbioru atrybutów
|
||||
features = [i for i in features if i != best_feature]
|
||||
|
||||
# Dla każdej wartości wybranego atrybutu budujemy kolejne poddrzewo
|
||||
for value in np.unique(data[best_feature]):
|
||||
|
||||
sub_data = data.where(data[best_feature] == value).dropna()
|
||||
subtree = ID3(sub_data, data, features, target_attribute_name, parent_node_class)
|
||||
|
||||
tree[best_feature][value] = subtree
|
||||
|
||||
return (tree)
|
||||
|
||||
|
||||
def predict(query, tree, default='beetroot'):
|
||||
"""
|
||||
Przeszukiwanie drzewa w celu przewidzenia wartości atrybutu "label".
|
||||
W przypadku, gdy dane wejściowe nie pokrywają się z żadnymi wartościami w drzewie
|
||||
(np pH ziemi zostanie sklasyfikowane jako 'strongly acidic', a dane uczące nie obejmują rekordów dla takiej wartości),
|
||||
wówczas przewidywana zostaje wartość domyślna, w tym przypadku jest to burak jako warzywo o najmniejszych wymaganiach.
|
||||
"""
|
||||
|
||||
for key in list(query.keys()):
|
||||
if key in list(tree.keys()):
|
||||
try:
|
||||
result = tree[key][query[key]]
|
||||
except:
|
||||
return default
|
||||
result = tree[key][query[key]]
|
||||
if isinstance(result, dict):
|
||||
return predict(query, result)
|
||||
|
||||
else:
|
||||
return result
|
||||
|
||||
|
||||
def test(data, tree):
|
||||
# Wartości docelowych atrybutów (nazwy warzyw) zostają usunięte
|
||||
queries = data.iloc[:, :-1].to_dict(orient="records")
|
||||
|
||||
# Przewidywane wartości atrybutów
|
||||
predicted = pd.DataFrame(columns=["predicted"])
|
||||
|
||||
# Obliczenie precyzji przewidywań
|
||||
for i in range(len(data)):
|
||||
predicted.loc[i, "predicted"] = predict(queries[i], tree, 'beetroot')
|
||||
print('Precyzja przewidywań: ', (np.sum(predicted["predicted"] == data["label"]) / len(data)) * 100, '%')
|
||||
|
||||
|
||||
def predict_data(data):
|
||||
"""
|
||||
Funkcja dostosowana do formatu danych, jakimi dysponuje traktor
|
||||
'data' jest tutaj listą, która zostaje przekonwertowana do postaci słownika,
|
||||
aby możliwe było wywołanie procedury 'predict'.
|
||||
Wyniki zostają zwrócone w postaci listy.
|
||||
"""
|
||||
|
||||
queries = pd.DataFrame(data=data, columns=dataset.header)
|
||||
predicted = pd.DataFrame(columns=["predicted"])
|
||||
dict = queries.iloc[:, :-1].to_dict(orient="records")
|
||||
|
||||
for i in range(len(data)):
|
||||
predicted.loc[i, "predicted"] = predict(dict[i], tree, 'beetroot')
|
||||
|
||||
predicted_list = predicted.values.tolist()
|
||||
return predicted_list
|
||||
|
||||
|
||||
# tworzenie, wyświetlanie i testowanie drzewa
|
||||
|
||||
tree = ID3(training_data, training_data, training_data.columns[:-1])
|
||||
#pprint(tree)
|
||||
#test(testing_data, tree)
|
@ -1,26 +0,0 @@
|
||||
from plant_upgrade import Plant
|
||||
from datetime import datetime
|
||||
|
||||
|
||||
class Beetroot(Plant):
|
||||
|
||||
def __init__(self, collect):
|
||||
super().__init__('beetroot', collect)
|
||||
self._wasFertilized = False # roslina nie byla nawozona przy tworzeniu
|
||||
|
||||
# zwraca czy zbierać rośline
|
||||
def collect(self):
|
||||
if self.have_soil():
|
||||
if self._collect < 95:
|
||||
return 'False'
|
||||
elif 95 <= self._collect <= 115:
|
||||
return 'True'
|
||||
elif self._collect > 115:
|
||||
return 'Delete'
|
||||
|
||||
# zwraca czy nawozić
|
||||
def fertillizing(self):
|
||||
if 35 <= self._collect <= 50:
|
||||
return True
|
||||
else:
|
||||
return False
|
@ -1,26 +0,0 @@
|
||||
from plant_upgrade import Plant
|
||||
from datetime import datetime
|
||||
|
||||
|
||||
class Cabbage(Plant):
|
||||
|
||||
def __init__(self, collect):
|
||||
super().__init__('cabbage', collect)
|
||||
self._wasFertilized = False # roslina nie byla nawozona przy tworzeniu
|
||||
|
||||
# zwraca czy zbierać rośline
|
||||
def collect(self):
|
||||
if self.have_soil():
|
||||
if self._collect < 85:
|
||||
return 'False'
|
||||
elif 85 <= self._collect <= 100:
|
||||
return 'True'
|
||||
elif self._collect > 100:
|
||||
return 'Delete'
|
||||
|
||||
# zwraca czy nawozić
|
||||
def fertillizing(self):
|
||||
if 30 <= self._collect <= 45:
|
||||
return True
|
||||
else:
|
||||
return False
|
@ -1,26 +0,0 @@
|
||||
from plant_upgrade import Plant
|
||||
from datetime import datetime
|
||||
|
||||
|
||||
class Carrot(Plant):
|
||||
|
||||
def __init__(self, collect):
|
||||
super().__init__('carrot', collect)
|
||||
self._wasFertilized = False # roslina nie byla nawozona przy tworzeniu
|
||||
|
||||
# zwraca czy zbierać rośline
|
||||
def collect(self):
|
||||
if self.have_soil():
|
||||
if self._collect < 90:
|
||||
return 'False'
|
||||
elif 90 <= self._collect <= 105:
|
||||
return 'True'
|
||||
elif self._collect > 105:
|
||||
return 'Delete'
|
||||
|
||||
# zwraca czy nawozić
|
||||
def fertillizing(self):
|
||||
if 30 <= self._collect <= 50:
|
||||
return True
|
||||
else:
|
||||
return False
|
@ -1,113 +0,0 @@
|
||||
from soil_upgrade import Soil
|
||||
from carrot_upgrade import Carrot
|
||||
from beetroot_upgrade import Beetroot
|
||||
from cabbage_upgrade import Cabbage
|
||||
|
||||
header = ['previous', 'soil pH', 'dry level', 'label']
|
||||
|
||||
training_data = [
|
||||
['carrot', 'alkaline', 'dry', 'beetroot'],
|
||||
['carrot', 'slightly acidic', 'dry', 'beetroot'],
|
||||
['cabbage', 'alkaline', 'dry', 'beetroot'],
|
||||
['none', 'alkaline', 'dry', 'beetroot'],
|
||||
['carrot', 'slightly acidic', 'medium wet', 'beetroot'],
|
||||
['none', 'slightly acidic', 'dry', 'beetroot'],
|
||||
['pumpkin', 'neutral', 'dry', 'beetroot'],
|
||||
['beetroot', 'neutral', 'dry', 'beetroot'],
|
||||
['cabbage', 'alkaline', 'medium wet', 'beetroot'],
|
||||
['none', 'slightly acidic', 'medium wet', 'beetroot'],
|
||||
['cabbage', 'acidic', 'dry', 'carrot'],
|
||||
['none', 'acidic', 'medium wet', 'carrot'],
|
||||
['carrot', 'neutral', 'dry', 'carrot'],
|
||||
['beetroot', 'slightly acidic', 'dry', 'carrot'],
|
||||
['pumpkin', 'acidic', 'medium wet', 'carrot'],
|
||||
['beetroot', 'acidic', 'medium wet', 'carrot'],
|
||||
['carrot', 'neutral', 'dry', 'carrot'],
|
||||
['pumpkin', 'slightly acidic', 'medium wet', 'carrot'],
|
||||
['beetroot', 'neutral', 'wet', 'pumpkin'],
|
||||
['none', 'neutral', 'wet', 'pumpkin'],
|
||||
['carrot', 'slightly acidic', 'wet', 'pumpkin'],
|
||||
['pumpkin', 'neutral', 'wet', 'pumpkin'],
|
||||
['cabbage', 'slightly acidic', 'medium wet', 'pumpkin'],
|
||||
['carrot', 'neutral', 'wet', 'pumpkin'],
|
||||
['cabbage', 'neutral', 'wet', 'pumpkin'],
|
||||
['none', 'slightly acidic', 'wet', 'pumpkin'],
|
||||
['beetroot', 'slightly acidic', 'medium wet', 'pumpkin'],
|
||||
['carrot', 'neutral', 'medium wet', 'cabbage'],
|
||||
['pumpkin', 'alkaline', 'wet', 'cabbage'],
|
||||
['none', 'alkaline', 'medium wet', 'cabbage'],
|
||||
['beetroot', 'neutral', 'medium wet', 'cabbage'],
|
||||
['cabbage', 'slightly acidic', 'wet', 'cabbage'],
|
||||
['none', 'neutral', 'medium wet', 'cabbage'],
|
||||
['cabbage', 'neutral', 'medium wet', 'cabbage'],
|
||||
['carrot', 'alkaline', 'wet', 'cabbage'],
|
||||
['none', 'alkaline', 'wet', 'cabbage'],
|
||||
['pumpkin', 'neutral', 'medium wet', 'cabbage'],
|
||||
['carrot', 'neutral', 'soaking wet', 'none'],
|
||||
['beetroot', 'alkaline', 'very dry', 'none'],
|
||||
['none', 'alkaline', 'soaking wet', 'none'],
|
||||
['cabbage', 'acidic', 'medium wet', 'none'],
|
||||
['pumpkin', 'acidic', 'soaking wet', 'none'],
|
||||
['cabbage', 'slightly acidic', 'soaking wet', 'none'],
|
||||
['none', 'slightly acidic', 'soaking wet', 'none'],
|
||||
['carrot', 'neutral', 'very dry', 'none'],
|
||||
['carrot', 'acidic', 'medium wet', 'none'],
|
||||
['pumpkin', 'neutral', 'soaking wet', 'none']
|
||||
]
|
||||
|
||||
testing_data = [
|
||||
|
||||
['beetroot', 'neutral', 'dry', 'beetroot'],
|
||||
['cabbage', 'alkaline', 'medium wet', 'beetroot'],
|
||||
['none', 'slightly acidic', 'medium wet', 'beetroot'],
|
||||
['cabbage', 'acidic', 'dry', 'carrot'],
|
||||
['none', 'acidic', 'medium wet', 'carrot'],
|
||||
['carrot', 'neutral', 'dry', 'carrot'],
|
||||
['beetroot', 'neutral', 'wet', 'pumpkin'],
|
||||
['none', 'neutral', 'wet', 'pumpkin'],
|
||||
['carrot', 'slightly acidic', 'wet', 'pumpkin'],
|
||||
['carrot', 'neutral', 'medium wet', 'cabbage'],
|
||||
['pumpkin', 'alkaline', 'wet', 'cabbage'],
|
||||
['none', 'alkaline', 'medium wet', 'cabbage'],
|
||||
['carrot', 'neutral', 'soaking wet', 'none'],
|
||||
['beetroot', 'alkaline', 'very dry', 'none'],
|
||||
['none', 'alkaline', 'soaking wet', 'none'],
|
||||
|
||||
]
|
||||
|
||||
|
||||
def create_data_soil():
|
||||
all_soil = []
|
||||
|
||||
soil = Soil(6.5, 0.5)
|
||||
plant = Cabbage(100)
|
||||
soil.add_plant(plant)
|
||||
all_soil.append(soil)
|
||||
|
||||
soil = Soil(4.6, 0.7)
|
||||
plant = Carrot(100)
|
||||
soil.add_plant(plant)
|
||||
all_soil.append(soil)
|
||||
|
||||
soil = Soil(5.6, 0.6)
|
||||
all_soil.append(soil)
|
||||
|
||||
soil = Soil(6.1, 0.5)
|
||||
plant = Beetroot(95)
|
||||
soil.add_plant(plant)
|
||||
all_soil.append(soil)
|
||||
|
||||
soil = Soil(6.5, 0.4)
|
||||
plant = Cabbage(90)
|
||||
soil.add_plant(plant)
|
||||
all_soil.append(soil)
|
||||
|
||||
soil = Soil(6.0, 0.5)
|
||||
all_soil.append(soil)
|
||||
|
||||
soil = Soil(7.1, 0.5)
|
||||
plant = Cabbage(80)
|
||||
soil.add_plant(plant)
|
||||
all_soil.append(soil)
|
||||
|
||||
return all_soil
|
@ -1,97 +0,0 @@
|
||||
from ID3 import predict_data
|
||||
from dataset import create_data_soil
|
||||
from plant_upgrade import Plant
|
||||
import pandas as pd
|
||||
|
||||
|
||||
def decide_to_plant(soil):
|
||||
"""
|
||||
Z tej funkcji będzie korzystał traktor, aby podjąć decyzję o sadzeniu rośliny.
|
||||
Kluczowym punktem w tym działaniu jest sprawdzenie, czy w danej ziemi nie rośnie już jakaś roślina,
|
||||
dopiero po roztrzygnięciu tej kwestii następuje poszukiwanie odpowiedniej rośliny w drzewie decyzyjnym.
|
||||
"""
|
||||
|
||||
if soil.have_plant():
|
||||
plant = soil.get_plant()
|
||||
if plant.collect() == 'True':
|
||||
info = get_info(soil)
|
||||
plant.leave_soil()
|
||||
else:
|
||||
return [['none']]
|
||||
else:
|
||||
info = get_info(soil)
|
||||
|
||||
data = []
|
||||
data.append(info)
|
||||
|
||||
# Roślina jest gotowa do zbioru lub ziemia jest wolna
|
||||
predicted = predict_data(data)
|
||||
grow_a_plant(soil, predicted[0][0])
|
||||
|
||||
return predicted
|
||||
|
||||
|
||||
def grow_a_plant(soil, plant_name):
|
||||
plant = Plant(plant_name)
|
||||
soil.add_plant(plant)
|
||||
|
||||
|
||||
def get_info(soil):
|
||||
|
||||
previous = 'none'
|
||||
|
||||
if soil.have_plant():
|
||||
plant = soil.get_plant()
|
||||
previous = plant.get_name()
|
||||
|
||||
info = [previous, categorize_pH(soil.get_pH()), categorize_dry_level(soil.get_dry_level()), '']
|
||||
|
||||
return info
|
||||
|
||||
|
||||
def categorize_pH(pH):
|
||||
if pH <= 4.5:
|
||||
return 'strongly acidic'
|
||||
if 4.5 < pH <= 5.5:
|
||||
return 'acidic'
|
||||
if 5.5 < pH <= 6.5:
|
||||
return 'slightly acidic'
|
||||
if 6.5 < pH <= 7.2:
|
||||
return 'neutral'
|
||||
if 7.2 < pH:
|
||||
return 'alkaline'
|
||||
|
||||
|
||||
def categorize_dry_level(dry_level):
|
||||
if dry_level <= 0.1:
|
||||
return 'soaking wet'
|
||||
if 0.1 < dry_level <= 0.4:
|
||||
return 'wet'
|
||||
if 0.4 < dry_level <= 0.6:
|
||||
return 'medium wet'
|
||||
if 0.6 < dry_level <= 0.8:
|
||||
return 'dry'
|
||||
if 0.8 < dry_level:
|
||||
return 'very dry'
|
||||
|
||||
|
||||
"""
|
||||
Testowanie działania dla argumentów obiektu Soil
|
||||
"""
|
||||
|
||||
all_soil = create_data_soil()
|
||||
result = []
|
||||
|
||||
for soil in all_soil:
|
||||
predicted = decide_to_plant(soil)
|
||||
for p in predicted:
|
||||
if soil.have_plant():
|
||||
plant = soil.get_plant().get_name()
|
||||
collect = soil.get_plant().get_collect()
|
||||
else:
|
||||
plant = 'none'
|
||||
collect = '-'
|
||||
result.append([soil.get_pH(), soil.get_dry_level(), plant, collect, p[0]])
|
||||
|
||||
result = pd.DataFrame(data=result, columns=['pH', 'dry level', 'plant', 'ripe', 'prediction'])
|
||||
#print(result)
|
@ -1,52 +0,0 @@
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
|
||||
class Plant:
|
||||
|
||||
def __init__(self, name, collect=0):
|
||||
super().__init__()
|
||||
self._soil = -1 # jak tworzymy rosline to nie bedzie ona miala gleby
|
||||
self._name = name # to nazwa rosliny będzie np. burak
|
||||
self._collect = collect # nowa roslina jest domyślnie w 0% dojrzala
|
||||
|
||||
# to sie drukuje jak zapytamy o stworzony obiekt
|
||||
def __str__(self):
|
||||
return f'Plant: {self._name}, Soil: {self._soil}, Status: {self.collect()}'
|
||||
|
||||
# metoda abstrakcyjna, kazda roslina ma inny czas rosniecia wiec pass
|
||||
@abstractmethod
|
||||
def collect(self):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def fertillizing(self):
|
||||
pass
|
||||
|
||||
# pobieramy wspolrzedne roslinki
|
||||
def get_coordinates(self):
|
||||
if self.have_soil():
|
||||
a = self.get_soil()
|
||||
a.get_coordinates(self) # get coordinates jest metoda w glebie
|
||||
|
||||
def get_name(self):
|
||||
return self._name
|
||||
|
||||
def get_collect(self):
|
||||
return self._collect
|
||||
|
||||
# dodajemy glebe
|
||||
def add_soil(self, soil):
|
||||
self._soil = soil
|
||||
|
||||
# zwraca czy roslinka znajduje sie w ziemii obecnie - jak nie ma gleby to znaczy ze nie jest zasadzona jeszcze albo już.
|
||||
def have_soil(self):
|
||||
return self._soil is not -1
|
||||
|
||||
# pobieramy jaka ma glebe, gleba tutaj będzie obiektem
|
||||
def get_soil(self):
|
||||
return self._soil
|
||||
|
||||
# to w przypadku jak bedziemy wyciagac z ziemii roslinke
|
||||
def leave_soil(self):
|
||||
if self.have_soil():
|
||||
self._soil = -1
|
@ -1,26 +0,0 @@
|
||||
from plant_upgrade import Plant
|
||||
from datetime import datetime
|
||||
|
||||
|
||||
class Pumpkin(Plant):
|
||||
|
||||
def __init__(self, collect):
|
||||
super().__init__('pumpkin', collect)
|
||||
self._wasFertilized = False # roslina nie byla nawozona przy tworzeniu
|
||||
|
||||
# zwraca czy zbierać rośline
|
||||
def collect(self):
|
||||
if self.have_soil():
|
||||
if self._collect < 90:
|
||||
return 'False'
|
||||
elif 90 <= self._collect <= 110:
|
||||
return 'True'
|
||||
elif self._collect > 110:
|
||||
return 'Delete'
|
||||
|
||||
# zwraca czy nawozić
|
||||
def fertillizing(self):
|
||||
if 20 <= self._collect <= 45:
|
||||
return True
|
||||
else:
|
||||
return False
|
@ -1,54 +0,0 @@
|
||||
from datetime import datetime
|
||||
|
||||
|
||||
class Soil:
|
||||
|
||||
def __init__(self, pH, dry):
|
||||
super().__init__()
|
||||
self._plant = -1 # nowa gleba nie ma roślinki
|
||||
self._dry = dry # procent wysuszenia gleby, tworząc nową jest nawodniona w 100%
|
||||
self._pH = pH
|
||||
|
||||
def __str__(self):
|
||||
if self.have_plant():
|
||||
return f'pH={self._pH}, dry level={self._dry}, plant={self.get_plant().get_name()}'
|
||||
else:
|
||||
return f'soil: pH={self._pH}, dry level={self._dry}, plant=none'
|
||||
|
||||
# zasadzenie roślinki
|
||||
def add_plant(self, plant):
|
||||
if not self.have_plant():
|
||||
plant.add_soil(self)
|
||||
self._plant = plant
|
||||
|
||||
# zwraca czy w ziemi znajduje się roślinka
|
||||
def have_plant(self):
|
||||
return self._plant != -1
|
||||
|
||||
# zwraca roślinkę znajdującą się w ziemii
|
||||
def get_plant(self):
|
||||
return self._plant
|
||||
|
||||
def get_pH(self):
|
||||
return self._pH
|
||||
|
||||
def get_dry_level(self):
|
||||
return self._dry
|
||||
|
||||
# sprawdza w ilu procentach ziemia jest sucha
|
||||
def is_dry(self):
|
||||
self.__drying()
|
||||
if self._dry < 30:
|
||||
return 'False'
|
||||
elif 30 <= self._dry < 70:
|
||||
return 'Medium'
|
||||
else:
|
||||
return 'True'
|
||||
|
||||
# usuwa roślinkę z ziemi i ją zwraca
|
||||
def plant_remove(self):
|
||||
if self.have_plant():
|
||||
a = self.get_plant()
|
||||
a.leave_soil()
|
||||
self._plant = -1
|
||||
return a
|
38
beetroot.py
38
beetroot.py
@ -1,38 +0,0 @@
|
||||
from plant import Plant
|
||||
from datetime import datetime
|
||||
|
||||
class Beetroot(Plant):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self._wasFertilized = False #roslina nie byla nawozona przy tworzeniu
|
||||
|
||||
def add_soil(self, soil):
|
||||
super().add_soil()
|
||||
self._starttime = datetime.now()
|
||||
|
||||
#zwraca czy zbierać rośline
|
||||
def collect(self):
|
||||
if self.have_soil():
|
||||
self.__growing()
|
||||
if self._collect < 95:
|
||||
return 'False'
|
||||
elif 95 <= self._collect <= 115:
|
||||
return 'True'
|
||||
elif self._collect > 115:
|
||||
return 'Delete'
|
||||
|
||||
#zwraca czy nawozić
|
||||
def fertillizing(self):
|
||||
if 35 <= self._collect <= 50:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
#każde iles czasu zwieksza wzrost rosliny, wywolywana w momencie sprawdzania czy roslina jest gotowa do zbiorow
|
||||
def __growing(self):
|
||||
checktime = datetime.now()
|
||||
delta = checktime - self._starttime
|
||||
a = delta // 40
|
||||
self._collect += a
|
||||
self._starttime = checktime
|
38
cabbage.py
38
cabbage.py
@ -1,38 +0,0 @@
|
||||
from plant import Plant
|
||||
from datetime import datetime
|
||||
|
||||
class Cabbage(Plant):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self._wasFertilized = False #roslina nie byla nawozona przy tworzeniu
|
||||
|
||||
def add_soil(self, soil):
|
||||
super().add_soil()
|
||||
self._starttime = datetime.now()
|
||||
|
||||
#zwraca czy zbierać rośline
|
||||
def collect(self):
|
||||
if self.have_soil():
|
||||
self.__growing()
|
||||
if self._collect < 85:
|
||||
return 'False'
|
||||
elif 85 <= self._collect <= 100:
|
||||
return 'True'
|
||||
elif self._collect > 100:
|
||||
return 'Delete'
|
||||
|
||||
#zwraca czy nawozić
|
||||
def fertillizing(self):
|
||||
if 30 <= self._collect <= 45:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
#każde iles czasu zwieksza wzrost rosliny, wywolywana w momencie sprawdzania czy roslina jest gotowa do zbiorow
|
||||
def __growing(self):
|
||||
checktime = datetime.now()
|
||||
delta = checktime - self._starttime
|
||||
a = delta // 70
|
||||
self._collect += a
|
||||
self._starttime = checktime
|
38
carrot.py
38
carrot.py
@ -1,38 +0,0 @@
|
||||
from plant import Plant
|
||||
from datetime import datetime
|
||||
|
||||
class Carrot(Plant):
|
||||
|
||||
def __init__(self, name, ID):
|
||||
super().__init__(name, ID)
|
||||
self._wasFertilized = False #roslina nie byla nawozona przy tworzeniu
|
||||
|
||||
def add_soil(self, soil):
|
||||
super().add_soil()
|
||||
self._starttime = datetime.now()
|
||||
|
||||
#zwraca czy zbierać rośline
|
||||
def collect(self):
|
||||
if self.have_soil():
|
||||
self.__growing()
|
||||
if self._collect < 90:
|
||||
return 'False'
|
||||
elif 90 <= self._collect <= 105:
|
||||
return 'True'
|
||||
elif self._collect > 105:
|
||||
return 'Delete'
|
||||
|
||||
#zwraca czy nawozić
|
||||
def fertillizing(self):
|
||||
if 30 <= self._collect <= 50:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
#każde iles czasu zwieksza wzrost rosliny, wywolywana w momencie sprawdzania czy roslina jest gotowa do zbiorow
|
||||
def __growing(self):
|
||||
checktime = datetime.now()
|
||||
delta = checktime - self._starttime
|
||||
a = delta // 60
|
||||
self._collect += a
|
||||
self._starttime = checktime
|
@ -10,7 +10,7 @@ from sklearn.tree import export_graphviz
|
||||
def decision(plant,feed,growth,dryness):
|
||||
|
||||
# czytanie pliku csv
|
||||
df = pd.read_csv("data.csv")
|
||||
df = pd.read_csv("data/data.csv")
|
||||
#print(df)
|
||||
|
||||
#zmiana słów na cyfry, ponieważ drzewo decyzyjne opiera się na cyfrach
|
||||
|
9
main.py
9
main.py
@ -56,7 +56,7 @@ class Game(object):
|
||||
imgs.append(img_dir + '/' + random.choice(os.listdir(img_dir)))
|
||||
|
||||
#model do rozpoznawania
|
||||
model = load_model('moj_model.h5')
|
||||
model = load_model('data/moj_model.h5')
|
||||
|
||||
#inicjalizacja
|
||||
pygame.init()
|
||||
@ -149,9 +149,6 @@ class Game(object):
|
||||
index = list_of_preds.index(max(list_of_preds))
|
||||
#print(index)
|
||||
|
||||
print("kapusta, kalafior, grzyb, dynia\n {}\n".format(preds) )
|
||||
plt.show()
|
||||
|
||||
names = ['cabbage', 'cauliflower', 'mushroom', 'pumpkin']
|
||||
|
||||
# decyzja o posadzeniu nowej rośliny następuje wtedy, gdy jest ona dojrzała przynajmniej w 90%
|
||||
@ -173,7 +170,9 @@ class Game(object):
|
||||
dt.decision(2, data_plant[pt][0],data_plant[pt][1],data_plant[pt][2])
|
||||
if index == 3:
|
||||
dt.decision(3, data_plant[pt][0],data_plant[pt][1],data_plant[pt][2])
|
||||
|
||||
|
||||
print("kapusta, kalafior, grzyb, dynia\n {}\n".format(preds) )
|
||||
plt.show()
|
||||
|
||||
def krata(self):
|
||||
#wymiary
|
||||
|
65
plant.py
65
plant.py
@ -1,65 +0,0 @@
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
class Plant:
|
||||
|
||||
#tworzymy jakas rosline co ma nazwe,i id. ID powiedzmy ze buraki beda mialy 1, marchewki 2 itd. gleby powiedzmy tez damy 4 i beda mialy id 5-8
|
||||
def __init__(self, name, ID):
|
||||
super().__init__()
|
||||
self._soil = -1 #jak tworzymy rosline to nie bedzie ona miala gleby
|
||||
self._name = name #to nazwa rosliny będzie np. burak1
|
||||
self._id = ID #id rosliny buraki bedą mialy 1, i po tym inne obiekty beda rozpoznawac ten obiekt
|
||||
self._collect = 0 #nowa roslina jest w 0% dojrzala
|
||||
|
||||
#to jest jakbysmy usuneli obiekt. zabezpieczenie, zeby gleba pozniej byla wolna
|
||||
def __del__(self):
|
||||
self.leave_soil()
|
||||
|
||||
#to sie drukuje jak zapytamy o stworzony obiekt
|
||||
def __str__(self):
|
||||
return f'Plant: {self._name}, Soil: {self._soil}, Status: {self.collect()}'
|
||||
|
||||
#metoda abstrakcyjna, kazda roslina ma inny czas rosniecia wiec pass
|
||||
@abstractmethod
|
||||
def collect(self):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def fertillizing(self):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def growing(self):
|
||||
pass
|
||||
|
||||
#pobieramy wspolrzedne roslinki
|
||||
def get_coordinates(self):
|
||||
if self.have_soil():
|
||||
a = self.get_soil()
|
||||
a.get_coordinates(self) #get coordinates jest metoda w glebie
|
||||
|
||||
#pobieramy id roślinki
|
||||
def get_id(self):
|
||||
return self._id
|
||||
|
||||
#dodajemy glebe
|
||||
def add_soil(self, soil):
|
||||
self._soil = soil
|
||||
|
||||
#zwraca czy roslinka znajduje sie w ziemii obecnie - jak nie ma gleby to znaczy ze nie jest zasadzona jeszcze albo już.
|
||||
def have_soil(self):
|
||||
return self._soil is not -1
|
||||
|
||||
#pobieramy jaka ma glebe, gleba tutaj będzie obiektem
|
||||
def get_soil(self):
|
||||
return self._soil
|
||||
|
||||
#to w przypadku jak bedziemy wyciagac z ziemii roslinke
|
||||
def leave_soil(self):
|
||||
if self.have_soil():
|
||||
a = self.get_soil()
|
||||
a.plant_remove() #to bedzie metoda w klasie Soil, bedzie usuwac roslinke z gleby
|
||||
self._soil = -1
|
||||
|
||||
|
||||
|
||||
|
38
pumpkin.py
38
pumpkin.py
@ -1,38 +0,0 @@
|
||||
from plant import Plant
|
||||
from datetime import datetime
|
||||
|
||||
class Pumpkin(Plant):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self._wasFertilized = False #roslina nie byla nawozona przy tworzeniu
|
||||
|
||||
def add_soil(self, soil):
|
||||
super().add_soil()
|
||||
self._starttime = datetime.now()
|
||||
|
||||
#zwraca czy zbierać rośline
|
||||
def collect(self):
|
||||
if self.have_soil():
|
||||
self.__growing()
|
||||
if self._collect < 90:
|
||||
return 'False'
|
||||
elif 90 <= self._collect <= 110:
|
||||
return 'True'
|
||||
elif self._collect > 110:
|
||||
return 'Delete'
|
||||
|
||||
#zwraca czy nawozić
|
||||
def fertillizing(self):
|
||||
if 20 <= self._collect <= 45:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
#każde iles czasu zwieksza wzrost rosliny, wywolywana w momencie sprawdzania czy roslina jest gotowa do zbiorow
|
||||
def __growing(self):
|
||||
checktime = datetime.now()
|
||||
delta = checktime - self._starttime
|
||||
a = delta // 50
|
||||
self._collect += a
|
||||
self._starttime = checktime
|
@ -22,8 +22,8 @@ Klasyfikator działa w głównej pętli while w pliku main.py. Uruchamia się gd
|
||||
Gdy klasyfikator zakończy swoje działanie, w konsoli pojawia się najbardziej prawdopodobny obiekt znajdujący się na zdjęciu. Zdjęcie pojawia się w osobnym oknie. Po zamknięciu okna mozemy kontynuować sterowanie traktorem za pomocą strzałek.
|
||||
|
||||
## Działanie
|
||||
![uczenie](ss/adamski2.png) <br>
|
||||
![dzialanie](ss/adamski1.png)
|
||||
![uczenie](../ss/adamski2.png) <br>
|
||||
![dzialanie](../ss/adamski1.png)
|
||||
|
||||
## Uruchomienie
|
||||
Instalacja tensorflow <br>
|
67
soil.py
67
soil.py
@ -1,67 +0,0 @@
|
||||
from datetime import datetime
|
||||
|
||||
class Soil:
|
||||
|
||||
def __init__(self, x, y, ID):
|
||||
super().__init__()
|
||||
self._id = ID
|
||||
self._x = x
|
||||
self._y = y
|
||||
self._plant = -1 #nowa gleba nie ma roślinki
|
||||
self._dry = 0 #procent wysuszenia gleby, tworząc nową jest nawodniona w 100%
|
||||
self._starttime = datetime.now()
|
||||
|
||||
def __del__(self):
|
||||
self.plant_remove()
|
||||
|
||||
def __str__(self):
|
||||
return f'{self._x}, {self._y}), Plant: {self._plant}'
|
||||
|
||||
# współrzędne pola
|
||||
def get_coordinates(self):
|
||||
return self._x, self._y
|
||||
|
||||
# id gleby
|
||||
def get_id(self):
|
||||
return self._id
|
||||
|
||||
# zasadzenie roślinki
|
||||
def add_plant(self, plant):
|
||||
if not self.have_plant():
|
||||
plant.add_soil(self)
|
||||
self._plant = plant
|
||||
|
||||
# zwraca czy w ziemi znajduje się roślinka
|
||||
def have_plant(self):
|
||||
return self._plant is not -1
|
||||
|
||||
# zwraca roślinkę znajdującą się w ziemii
|
||||
def get_plant(self):
|
||||
return self._soil
|
||||
|
||||
#sprawdza w ilu procentach ziemia jest sucha
|
||||
def is_dry(self):
|
||||
self.__drying()
|
||||
if self._dry < 30:
|
||||
return 'False'
|
||||
elif 30 <= self._dry < 70:
|
||||
return 'Medium'
|
||||
else:
|
||||
return 'True'
|
||||
|
||||
#metoda wysuszajaca ziemie. dodaje wysuszenie do ziemi, wywolywana w momencie sprawdzania czy ziemia jest sucha
|
||||
def __drying(self):
|
||||
checktime = datetime.now()
|
||||
delta = checktime - self._starttime
|
||||
a = delta //60
|
||||
self._dry += a
|
||||
self._starttime = checktime
|
||||
self.__is_dry()
|
||||
|
||||
|
||||
# usuwa roślinkę z ziemi i ją zwraca
|
||||
def plant_remove(self):
|
||||
if self.have_plant():
|
||||
a = self.get_plant()
|
||||
a.leave_soil()
|
||||
self._plant = -1
|
Loading…
Reference in New Issue
Block a user