## Podprojekt Jakub Adamski
Wykrywanie rodzaju rośliny na danym polu, w którym znajduje się traktor.
## Spis treści
* [Wykorzystana technologia](#wykorzystana-technologia)
* [Dane](#dane)
* [Kod](#kod)
* [Działanie](#działanie)
* [Uruchomienie](#uruchomienie)
* [Notatki](#notatki)
## Wykorzystana technologia
W projekcie wykorzystuję sieć neuronową. Jest to klasyfikator obiektów, oparty na modelu MobileNetV2. MobileNet to wysoce zoptymalizowana struktura pozwalająca na rozpoznawanie obiektów.
Składa się z warstw: CNN - convolutional neural network do wyodrębnienia cech charakterystycznych z obrazka oraz jednej warstwy dense, złozonej z 4 neuronow (ilosc obiektow w moim projekcie), które produkują finalny wynik na podstawie wyniku z CNN.
## Dane
Zgromadzone zdjecia dostepne sa tutaj: [link](https://drive.google.com/open?id=1cs3TE-niBrhXT-23IA9g2rll3Qpk7Xdk). Dane zbierałem za pomocą wyszukiwarki google, następnie pogrupowałem według klas. Ostatnie 20 warstw sieci jest wytrenowana w pliku net_training.py, pierwsze warstwy są uczone na zbiorze danych imagenet - zmienna base_model.
Do uruchomienia uzywam pakietu keras dostępnego w bibliotece tensorflow. Tensorflow to rozbudowany zestaw narzędzi do machine learningu, keraz to nakładka ułatwijąca uzywanie tego frameworku.
## Kod
Klasyfikator działa w głównej pętli while w pliku main.py. Uruchamia się gdy traktor (niebieski kwadrat) zmieni swoją lokalizację. Zdjęcia przypisane do danej kratki są dobierane losowo. W finalnej wersji zdjęć będzie więcej - folder imgs/.
Gdy klasyfikator zakończy swoje działanie, w konsoli pojawia się najbardziej prawdopodobny obiekt znajdujący się na zdjęciu. Zdjęcie pojawia się w osobnym oknie. Po zamknięciu okna mozemy kontynuować sterowanie traktorem za pomocą strzałek.
## Działanie
![uczenie](ss/adamski2.png)
![dzialanie](ss/adamski1.png)
## Uruchomienie
Instalacja tensorflow
Byl error z jakas biblioteka, trzeba zainstalować nomkl lub rozwiazanie ad hoc to komenda która pokazuje się przy błędzie. os.environ['KMP_DUPLICATE_LIB_OK']='True'
https://docs.anaconda.com/mkl-optimizations/
## Notatki
Lista obiektów:
- pumpkin/dynia
- cabbage/kapusta
- mushroom/grzyb
- cauliflower/kalafior