2023-04-19 20:22:37 +02:00
|
|
|
import pandas as pd
|
2023-04-19 18:47:42 +02:00
|
|
|
import os
|
|
|
|
from sklearn.model_selection import train_test_split
|
2023-05-11 18:37:18 +02:00
|
|
|
import train
|
2023-04-19 18:47:42 +02:00
|
|
|
|
|
|
|
CUTOFF = int(os.environ['CUTOFF'])
|
2023-04-19 20:22:37 +02:00
|
|
|
adults = pd.read_csv('adult.csv')
|
2023-04-19 18:47:42 +02:00
|
|
|
adults = adults.dropna()
|
2023-05-11 18:40:03 +02:00
|
|
|
adults = adults.drop(adults.columns[[1, 3, 4, 5, 6, 7, 8, 9, 13, 14]], axis=1)
|
2023-04-19 18:47:42 +02:00
|
|
|
|
|
|
|
adults = adults.sample(CUTOFF)
|
|
|
|
|
2023-05-11 18:27:25 +02:00
|
|
|
X = adults.copy()
|
|
|
|
Y = pd.DataFrame(adults.pop('age'))
|
2023-04-19 18:47:42 +02:00
|
|
|
|
2023-05-11 18:27:25 +02:00
|
|
|
X_train, X_temp, Y_train, Y_temp = train_test_split(X, Y, test_size=0.3, random_state=1)
|
|
|
|
X_dev, X_test, Y_dev, Y_test = train_test_split(X_temp, Y_temp, test_size=0.3, random_state=1)
|
|
|
|
|
|
|
|
X_train.to_csv('X_train.csv', index=False)
|
|
|
|
X_dev.to_csv('X_dev.csv', index=False)
|
|
|
|
X_test.to_csv('X_test.csv', index=False)
|
|
|
|
Y_test.to_csv('Y_test.csv', index=False)
|
|
|
|
Y_train.to_csv('Y_train.csv', index=False)
|
|
|
|
Y_dev.to_csv('Y_dev.csv', index=False)
|
2023-05-11 18:37:18 +02:00
|
|
|
|
|
|
|
train.main()
|