ium_z444439/script.py

121 lines
4.2 KiB
Python
Raw Normal View History

2023-04-19 17:21:39 +02:00
import os
import urllib.request
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
def download_file():
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data"
filename = "adult.data"
urllib.request.urlretrieve(url, filename)
csv_file = convert_data_to_csv()
return csv_file
def convert_data_to_csv():
data_file = "adult.data"
csv_file = "adult.csv"
df = pd.read_csv(data_file, header=None)
df.to_csv(csv_file, index=False)
delete_data_file()
return csv_file
def delete_data_file():
filename = "adult.data"
os.remove(filename)
def add_subsets_to_csv_file(data):
data.columns = ["age", "workclass", "fnlwgt", "education", "education-num", "marital-status", "occupation",
"relationship", "race", "sex", "capital-gain", "capital-loss", "hours-per-week", "native-country",
"income"]
train_data, test_data = train_test_split(data, test_size=0.2, random_state=42)
if len(train_data) > len(test_data):
train_data, dev_data = train_test_split(train_data, test_size=0.25, random_state=42)
else:
dev_data = pd.DataFrame()
train_data.to_csv("adult_train.csv", index=False)
dev_data.to_csv("adult_dev.csv", index=False)
test_data.to_csv("adult_test.csv", index=False)
print("Data set: ", data.shape)
print("Train Data set: ", train_data.shape)
print("Dev Data set: ", dev_data.shape)
print("Test Data set: ", test_data.shape)
return data
def check_if_data_set_has_division_into_subsets(file_name):
data = pd.read_csv(file_name)
if "train" not in data.columns or "dev" not in data.columns or "test" not in data.columns:
data_set = add_subsets_to_csv_file(data)
data_set.to_csv(file_name, index=False)
def get_statistics(data):
train_data = pd.read_csv("adult_train.csv", dtype={"income": "category"})
dev_data = pd.read_csv("adult_dev.csv", dtype={"income": "category"})
test_data = pd.read_csv("adult_test.csv", dtype={"income": "category"})
print("Wielkość zbioru: ", len(data))
print("Wielkość zbioru treningowego: ", len(train_data))
print("Wielkość zbioru walidacyjnego: ", len(dev_data))
print("Wielkość zbioru testowego: ", len(test_data))
print("Średnia wartość wieku: ", np.mean(data["age"]))
print("Minimalna wartość wieku: ", np.min(data["age"]))
print("Maksymalna wartość wieku: ", np.max(data["age"]))
print("Odchylenie standardowe wartości wieku: ", np.std(data["age"]))
print("Mediana wartości wieku: ", np.median(data["age"]))
print("Rozkład częstości klas: ")
freq_dist_all = data['income'].value_counts()
print('Rozkład częstości etykiet klas na całym zbiorze danych:')
print(freq_dist_all)
freq_dist_train = train_data['income'].value_counts()
print('Rozkład częstości etykiet klas na zbiorze treningowym:')
print(freq_dist_train)
freq_dist_test = test_data['income'].value_counts()
print('Rozkład częstości etykiet klas na zbiorze testowym:')
print(freq_dist_test)
freq_dist_dev = dev_data['income'].value_counts()
print('Rozkład częstości etykiet klas na zbiorze walidacyjnym:')
print(freq_dist_dev)
def normalization(data):
numeric_features = ['age', 'fnlwgt', 'education-num', 'capital-gain', 'capital-loss', 'hours-per-week']
numeric_data = data[numeric_features]
scaler = StandardScaler()
normalized_data = scaler.fit_transform(numeric_data)
data[numeric_features] = normalized_data
print(data.head())
def clean(data):
data.replace('?', np.nan, inplace=True)
data.dropna(inplace=True)
data.drop_duplicates(inplace=True)
data[['age', 'fnlwgt', 'education-num', 'capital-gain', 'capital-loss', 'hours-per-week']] = data[
['age', 'fnlwgt', 'education-num', 'capital-gain', 'capital-loss', 'hours-per-week']].apply(pd.to_numeric)
if __name__ == '__main__':
csv_file_name = download_file()
check_if_data_set_has_division_into_subsets(csv_file_name)
data = pd.read_csv(csv_file_name, dtype={"income": "category"})
get_statistics(data)
normalization(data)
clean(data)