add script and jenkinsfile
This commit is contained in:
commit
96b5908f34
34
JenkinsFile
Normal file
34
JenkinsFile
Normal file
@ -0,0 +1,34 @@
|
||||
pipeline {
|
||||
agent any
|
||||
parameters{
|
||||
string(
|
||||
defaultValue: '0',
|
||||
description: 'CUTOFF',
|
||||
name: 'CUTOFF',
|
||||
trim: false
|
||||
)
|
||||
}
|
||||
stages {
|
||||
stage('Clone repository') {
|
||||
steps {
|
||||
git 'https://git.wmi.amu.edu.pl/s444439/ium_z444439'
|
||||
}
|
||||
}
|
||||
|
||||
stage('Run shell script') {
|
||||
steps {
|
||||
sh 'mkdir -p dataset'
|
||||
sh 'curl -o dataset/adult.data https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data'
|
||||
sh 'sed -i "s/ //g" dataset/adult.data'
|
||||
sh 'cut -d"," -f1,3-5,9-10,13 dataset/adult.data > dataset/processed_data.csv'
|
||||
sh 'python script.py'
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
post {
|
||||
always {
|
||||
archiveArtifacts 'results/*'
|
||||
}
|
||||
}
|
||||
}
|
120
script.py
Normal file
120
script.py
Normal file
@ -0,0 +1,120 @@
|
||||
import os
|
||||
import urllib.request
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
|
||||
|
||||
def download_file():
|
||||
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data"
|
||||
filename = "adult.data"
|
||||
urllib.request.urlretrieve(url, filename)
|
||||
csv_file = convert_data_to_csv()
|
||||
return csv_file
|
||||
|
||||
|
||||
def convert_data_to_csv():
|
||||
data_file = "adult.data"
|
||||
csv_file = "adult.csv"
|
||||
df = pd.read_csv(data_file, header=None)
|
||||
df.to_csv(csv_file, index=False)
|
||||
delete_data_file()
|
||||
return csv_file
|
||||
|
||||
|
||||
def delete_data_file():
|
||||
filename = "adult.data"
|
||||
os.remove(filename)
|
||||
|
||||
|
||||
def add_subsets_to_csv_file(data):
|
||||
data.columns = ["age", "workclass", "fnlwgt", "education", "education-num", "marital-status", "occupation",
|
||||
"relationship", "race", "sex", "capital-gain", "capital-loss", "hours-per-week", "native-country",
|
||||
"income"]
|
||||
|
||||
train_data, test_data = train_test_split(data, test_size=0.2, random_state=42)
|
||||
if len(train_data) > len(test_data):
|
||||
train_data, dev_data = train_test_split(train_data, test_size=0.25, random_state=42)
|
||||
else:
|
||||
dev_data = pd.DataFrame()
|
||||
|
||||
train_data.to_csv("adult_train.csv", index=False)
|
||||
dev_data.to_csv("adult_dev.csv", index=False)
|
||||
test_data.to_csv("adult_test.csv", index=False)
|
||||
|
||||
print("Data set: ", data.shape)
|
||||
print("Train Data set: ", train_data.shape)
|
||||
print("Dev Data set: ", dev_data.shape)
|
||||
print("Test Data set: ", test_data.shape)
|
||||
return data
|
||||
|
||||
|
||||
def check_if_data_set_has_division_into_subsets(file_name):
|
||||
data = pd.read_csv(file_name)
|
||||
|
||||
if "train" not in data.columns or "dev" not in data.columns or "test" not in data.columns:
|
||||
data_set = add_subsets_to_csv_file(data)
|
||||
data_set.to_csv(file_name, index=False)
|
||||
|
||||
|
||||
def get_statistics(data):
|
||||
train_data = pd.read_csv("adult_train.csv", dtype={"income": "category"})
|
||||
dev_data = pd.read_csv("adult_dev.csv", dtype={"income": "category"})
|
||||
test_data = pd.read_csv("adult_test.csv", dtype={"income": "category"})
|
||||
|
||||
print("Wielkość zbioru: ", len(data))
|
||||
print("Wielkość zbioru treningowego: ", len(train_data))
|
||||
print("Wielkość zbioru walidacyjnego: ", len(dev_data))
|
||||
print("Wielkość zbioru testowego: ", len(test_data))
|
||||
print("Średnia wartość wieku: ", np.mean(data["age"]))
|
||||
print("Minimalna wartość wieku: ", np.min(data["age"]))
|
||||
print("Maksymalna wartość wieku: ", np.max(data["age"]))
|
||||
print("Odchylenie standardowe wartości wieku: ", np.std(data["age"]))
|
||||
print("Mediana wartości wieku: ", np.median(data["age"]))
|
||||
|
||||
print("Rozkład częstości klas: ")
|
||||
freq_dist_all = data['income'].value_counts()
|
||||
print('Rozkład częstości etykiet klas na całym zbiorze danych:')
|
||||
print(freq_dist_all)
|
||||
|
||||
freq_dist_train = train_data['income'].value_counts()
|
||||
print('Rozkład częstości etykiet klas na zbiorze treningowym:')
|
||||
print(freq_dist_train)
|
||||
|
||||
freq_dist_test = test_data['income'].value_counts()
|
||||
print('Rozkład częstości etykiet klas na zbiorze testowym:')
|
||||
print(freq_dist_test)
|
||||
|
||||
freq_dist_dev = dev_data['income'].value_counts()
|
||||
print('Rozkład częstości etykiet klas na zbiorze walidacyjnym:')
|
||||
print(freq_dist_dev)
|
||||
|
||||
|
||||
def normalization(data):
|
||||
numeric_features = ['age', 'fnlwgt', 'education-num', 'capital-gain', 'capital-loss', 'hours-per-week']
|
||||
numeric_data = data[numeric_features]
|
||||
|
||||
scaler = StandardScaler()
|
||||
normalized_data = scaler.fit_transform(numeric_data)
|
||||
|
||||
data[numeric_features] = normalized_data
|
||||
|
||||
print(data.head())
|
||||
|
||||
|
||||
def clean(data):
|
||||
data.replace('?', np.nan, inplace=True)
|
||||
data.dropna(inplace=True)
|
||||
data.drop_duplicates(inplace=True)
|
||||
data[['age', 'fnlwgt', 'education-num', 'capital-gain', 'capital-loss', 'hours-per-week']] = data[
|
||||
['age', 'fnlwgt', 'education-num', 'capital-gain', 'capital-loss', 'hours-per-week']].apply(pd.to_numeric)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
csv_file_name = download_file()
|
||||
check_if_data_set_has_division_into_subsets(csv_file_name)
|
||||
data = pd.read_csv(csv_file_name, dtype={"income": "category"})
|
||||
get_statistics(data)
|
||||
normalization(data)
|
||||
clean(data)
|
Loading…
Reference in New Issue
Block a user