Space-Project/dependencies/physx-4.1/include/foundation/PxVec4.h

377 lines
8.1 KiB
C
Raw Normal View History

2021-01-16 17:11:39 +01:00
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright (c) 2008-2019 NVIDIA Corporation. All rights reserved.
// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.
#ifndef PXFOUNDATION_PXVEC4_H
#define PXFOUNDATION_PXVEC4_H
/** \addtogroup foundation
@{
*/
#include "foundation/PxMath.h"
#include "foundation/PxVec3.h"
#include "foundation/PxSharedAssert.h"
/**
\brief 4 Element vector class.
This is a 4-dimensional vector class with public data members.
*/
#if !PX_DOXYGEN
namespace physx
{
#endif
class PxVec4
{
public:
/**
\brief default constructor leaves data uninitialized.
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4()
{
}
/**
\brief zero constructor.
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec4(PxZERO r) : x(0.0f), y(0.0f), z(0.0f), w(0.0f)
{
PX_UNUSED(r);
}
/**
\brief Assigns scalar parameter to all elements.
Useful to initialize to zero or one.
\param[in] a Value to assign to elements.
*/
explicit PX_CUDA_CALLABLE PX_INLINE PxVec4(float a) : x(a), y(a), z(a), w(a)
{
}
/**
\brief Initializes from 3 scalar parameters.
\param[in] nx Value to initialize X component.
\param[in] ny Value to initialize Y component.
\param[in] nz Value to initialize Z component.
\param[in] nw Value to initialize W component.
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4(float nx, float ny, float nz, float nw) : x(nx), y(ny), z(nz), w(nw)
{
}
/**
\brief Initializes from 3 scalar parameters.
\param[in] v Value to initialize the X, Y, and Z components.
\param[in] nw Value to initialize W component.
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4(const PxVec3& v, float nw) : x(v.x), y(v.y), z(v.z), w(nw)
{
}
/**
\brief Initializes from an array of scalar parameters.
\param[in] v Value to initialize with.
*/
explicit PX_CUDA_CALLABLE PX_INLINE PxVec4(const float v[]) : x(v[0]), y(v[1]), z(v[2]), w(v[3])
{
}
/**
\brief Copy ctor.
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4(const PxVec4& v) : x(v.x), y(v.y), z(v.z), w(v.w)
{
}
// Operators
/**
\brief Assignment operator
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4& operator=(const PxVec4& p)
{
x = p.x;
y = p.y;
z = p.z;
w = p.w;
return *this;
}
/**
\brief element access
*/
PX_CUDA_CALLABLE PX_INLINE float& operator[](unsigned int index)
{
PX_SHARED_ASSERT(index <= 3);
return reinterpret_cast<float*>(this)[index];
}
/**
\brief element access
*/
PX_CUDA_CALLABLE PX_INLINE const float& operator[](unsigned int index) const
{
PX_SHARED_ASSERT(index <= 3);
return reinterpret_cast<const float*>(this)[index];
}
/**
\brief returns true if the two vectors are exactly equal.
*/
PX_CUDA_CALLABLE PX_INLINE bool operator==(const PxVec4& v) const
{
return x == v.x && y == v.y && z == v.z && w == v.w;
}
/**
\brief returns true if the two vectors are not exactly equal.
*/
PX_CUDA_CALLABLE PX_INLINE bool operator!=(const PxVec4& v) const
{
return x != v.x || y != v.y || z != v.z || w != v.w;
}
/**
\brief tests for exact zero vector
*/
PX_CUDA_CALLABLE PX_INLINE bool isZero() const
{
return x == 0 && y == 0 && z == 0 && w == 0;
}
/**
\brief returns true if all 3 elems of the vector are finite (not NAN or INF, etc.)
*/
PX_CUDA_CALLABLE PX_INLINE bool isFinite() const
{
return PxIsFinite(x) && PxIsFinite(y) && PxIsFinite(z) && PxIsFinite(w);
}
/**
\brief is normalized - used by API parameter validation
*/
PX_CUDA_CALLABLE PX_INLINE bool isNormalized() const
{
const float unitTolerance = 1e-4f;
return isFinite() && PxAbs(magnitude() - 1) < unitTolerance;
}
/**
\brief returns the squared magnitude
Avoids calling PxSqrt()!
*/
PX_CUDA_CALLABLE PX_INLINE float magnitudeSquared() const
{
return x * x + y * y + z * z + w * w;
}
/**
\brief returns the magnitude
*/
PX_CUDA_CALLABLE PX_INLINE float magnitude() const
{
return PxSqrt(magnitudeSquared());
}
/**
\brief negation
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4 operator-() const
{
return PxVec4(-x, -y, -z, -w);
}
/**
\brief vector addition
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4 operator+(const PxVec4& v) const
{
return PxVec4(x + v.x, y + v.y, z + v.z, w + v.w);
}
/**
\brief vector difference
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4 operator-(const PxVec4& v) const
{
return PxVec4(x - v.x, y - v.y, z - v.z, w - v.w);
}
/**
\brief scalar post-multiplication
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4 operator*(float f) const
{
return PxVec4(x * f, y * f, z * f, w * f);
}
/**
\brief scalar division
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4 operator/(float f) const
{
f = 1.0f / f;
return PxVec4(x * f, y * f, z * f, w * f);
}
/**
\brief vector addition
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4& operator+=(const PxVec4& v)
{
x += v.x;
y += v.y;
z += v.z;
w += v.w;
return *this;
}
/**
\brief vector difference
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4& operator-=(const PxVec4& v)
{
x -= v.x;
y -= v.y;
z -= v.z;
w -= v.w;
return *this;
}
/**
\brief scalar multiplication
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4& operator*=(float f)
{
x *= f;
y *= f;
z *= f;
w *= f;
return *this;
}
/**
\brief scalar division
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4& operator/=(float f)
{
f = 1.0f / f;
x *= f;
y *= f;
z *= f;
w *= f;
return *this;
}
/**
\brief returns the scalar product of this and other.
*/
PX_CUDA_CALLABLE PX_INLINE float dot(const PxVec4& v) const
{
return x * v.x + y * v.y + z * v.z + w * v.w;
}
/** return a unit vector */
PX_CUDA_CALLABLE PX_INLINE PxVec4 getNormalized() const
{
float m = magnitudeSquared();
return m > 0.0f ? *this * PxRecipSqrt(m) : PxVec4(0, 0, 0, 0);
}
/**
\brief normalizes the vector in place
*/
PX_CUDA_CALLABLE PX_INLINE float normalize()
{
float m = magnitude();
if(m > 0.0f)
*this /= m;
return m;
}
/**
\brief a[i] * b[i], for all i.
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4 multiply(const PxVec4& a) const
{
return PxVec4(x * a.x, y * a.y, z * a.z, w * a.w);
}
/**
\brief element-wise minimum
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4 minimum(const PxVec4& v) const
{
return PxVec4(PxMin(x, v.x), PxMin(y, v.y), PxMin(z, v.z), PxMin(w, v.w));
}
/**
\brief element-wise maximum
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4 maximum(const PxVec4& v) const
{
return PxVec4(PxMax(x, v.x), PxMax(y, v.y), PxMax(z, v.z), PxMax(w, v.w));
}
PX_CUDA_CALLABLE PX_INLINE PxVec3 getXYZ() const
{
return PxVec3(x, y, z);
}
/**
\brief set vector elements to zero
*/
PX_CUDA_CALLABLE PX_INLINE void setZero()
{
x = y = z = w = 0.0f;
}
float x, y, z, w;
};
PX_CUDA_CALLABLE static PX_INLINE PxVec4 operator*(float f, const PxVec4& v)
{
return PxVec4(f * v.x, f * v.y, f * v.z, f * v.w);
}
#if !PX_DOXYGEN
} // namespace physx
#endif
/** @} */
#endif // #ifndef PXFOUNDATION_PXVEC4_H