Space-Project/dependencies/glm/gtc/round.inl

345 lines
9.7 KiB
Plaintext
Raw Normal View History

2021-01-16 17:11:39 +01:00
/// @ref gtc_round
/// @file glm/gtc/round.inl
#include "../detail/func_integer.hpp"
namespace glm{
namespace detail
{
template <typename T, precision P, template <typename, precision> class vecType, bool compute = false>
struct compute_ceilShift
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & v, T)
{
return v;
}
};
template <typename T, precision P, template <typename, precision> class vecType>
struct compute_ceilShift<T, P, vecType, true>
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & v, T Shift)
{
return v | (v >> Shift);
}
};
template <typename T, precision P, template <typename, precision> class vecType, bool isSigned = true>
struct compute_ceilPowerOfTwo
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(!std::numeric_limits<T>::is_iec559, "'ceilPowerOfTwo' only accept integer scalar or vector inputs");
vecType<T, P> const Sign(sign(x));
vecType<T, P> v(abs(x));
v = v - static_cast<T>(1);
v = v | (v >> static_cast<T>(1));
v = v | (v >> static_cast<T>(2));
v = v | (v >> static_cast<T>(4));
v = compute_ceilShift<T, P, vecType, sizeof(T) >= 2>::call(v, 8);
v = compute_ceilShift<T, P, vecType, sizeof(T) >= 4>::call(v, 16);
v = compute_ceilShift<T, P, vecType, sizeof(T) >= 8>::call(v, 32);
return (v + static_cast<T>(1)) * Sign;
}
};
template <typename T, precision P, template <typename, precision> class vecType>
struct compute_ceilPowerOfTwo<T, P, vecType, false>
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(!std::numeric_limits<T>::is_iec559, "'ceilPowerOfTwo' only accept integer scalar or vector inputs");
vecType<T, P> v(x);
v = v - static_cast<T>(1);
v = v | (v >> static_cast<T>(1));
v = v | (v >> static_cast<T>(2));
v = v | (v >> static_cast<T>(4));
v = compute_ceilShift<T, P, vecType, sizeof(T) >= 2>::call(v, 8);
v = compute_ceilShift<T, P, vecType, sizeof(T) >= 4>::call(v, 16);
v = compute_ceilShift<T, P, vecType, sizeof(T) >= 8>::call(v, 32);
return v + static_cast<T>(1);
}
};
template <bool is_float, bool is_signed>
struct compute_ceilMultiple{};
template <>
struct compute_ceilMultiple<true, true>
{
template <typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source > genType(0))
return Source + (Multiple - std::fmod(Source, Multiple));
else
return Source + std::fmod(-Source, Multiple);
}
};
template <>
struct compute_ceilMultiple<false, false>
{
template <typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
genType Tmp = Source - genType(1);
return Tmp + (Multiple - (Tmp % Multiple));
}
};
template <>
struct compute_ceilMultiple<false, true>
{
template <typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source > genType(0))
{
genType Tmp = Source - genType(1);
return Tmp + (Multiple - (Tmp % Multiple));
}
else
return Source + (-Source % Multiple);
}
};
template <bool is_float, bool is_signed>
struct compute_floorMultiple{};
template <>
struct compute_floorMultiple<true, true>
{
template <typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source >= genType(0))
return Source - std::fmod(Source, Multiple);
else
return Source - std::fmod(Source, Multiple) - Multiple;
}
};
template <>
struct compute_floorMultiple<false, false>
{
template <typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source >= genType(0))
return Source - Source % Multiple;
else
{
genType Tmp = Source + genType(1);
return Tmp - Tmp % Multiple - Multiple;
}
}
};
template <>
struct compute_floorMultiple<false, true>
{
template <typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source >= genType(0))
return Source - Source % Multiple;
else
{
genType Tmp = Source + genType(1);
return Tmp - Tmp % Multiple - Multiple;
}
}
};
template <bool is_float, bool is_signed>
struct compute_roundMultiple{};
template <>
struct compute_roundMultiple<true, true>
{
template <typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source >= genType(0))
return Source - std::fmod(Source, Multiple);
else
{
genType Tmp = Source + genType(1);
return Tmp - std::fmod(Tmp, Multiple) - Multiple;
}
}
};
template <>
struct compute_roundMultiple<false, false>
{
template <typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source >= genType(0))
return Source - Source % Multiple;
else
{
genType Tmp = Source + genType(1);
return Tmp - Tmp % Multiple - Multiple;
}
}
};
template <>
struct compute_roundMultiple<false, true>
{
template <typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source >= genType(0))
return Source - Source % Multiple;
else
{
genType Tmp = Source + genType(1);
return Tmp - Tmp % Multiple - Multiple;
}
}
};
}//namespace detail
////////////////
// isPowerOfTwo
template <typename genType>
GLM_FUNC_QUALIFIER bool isPowerOfTwo(genType Value)
{
genType const Result = glm::abs(Value);
return !(Result & (Result - 1));
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<bool, P> isPowerOfTwo(vecType<T, P> const & Value)
{
vecType<T, P> const Result(abs(Value));
return equal(Result & (Result - 1), vecType<T, P>(0));
}
//////////////////
// ceilPowerOfTwo
template <typename genType>
GLM_FUNC_QUALIFIER genType ceilPowerOfTwo(genType value)
{
return detail::compute_ceilPowerOfTwo<genType, defaultp, tvec1, std::numeric_limits<genType>::is_signed>::call(tvec1<genType, defaultp>(value)).x;
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> ceilPowerOfTwo(vecType<T, P> const & v)
{
return detail::compute_ceilPowerOfTwo<T, P, vecType, std::numeric_limits<T>::is_signed>::call(v);
}
///////////////////
// floorPowerOfTwo
template <typename genType>
GLM_FUNC_QUALIFIER genType floorPowerOfTwo(genType value)
{
return isPowerOfTwo(value) ? value : static_cast<genType>(1) << findMSB(value);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> floorPowerOfTwo(vecType<T, P> const & v)
{
return detail::functor1<T, T, P, vecType>::call(floorPowerOfTwo, v);
}
///////////////////
// roundPowerOfTwo
template <typename genIUType>
GLM_FUNC_QUALIFIER genIUType roundPowerOfTwo(genIUType value)
{
if(isPowerOfTwo(value))
return value;
genIUType const prev = static_cast<genIUType>(1) << findMSB(value);
genIUType const next = prev << static_cast<genIUType>(1);
return (next - value) < (value - prev) ? next : prev;
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> roundPowerOfTwo(vecType<T, P> const & v)
{
return detail::functor1<T, T, P, vecType>::call(roundPowerOfTwo, v);
}
////////////////
// isMultiple
template <typename genType>
GLM_FUNC_QUALIFIER bool isMultiple(genType Value, genType Multiple)
{
return isMultiple(tvec1<genType>(Value), tvec1<genType>(Multiple)).x;
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<bool, P> isMultiple(vecType<T, P> const & Value, T Multiple)
{
return (Value % Multiple) == vecType<T, P>(0);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<bool, P> isMultiple(vecType<T, P> const & Value, vecType<T, P> const & Multiple)
{
return (Value % Multiple) == vecType<T, P>(0);
}
//////////////////////
// ceilMultiple
template <typename genType>
GLM_FUNC_QUALIFIER genType ceilMultiple(genType Source, genType Multiple)
{
return detail::compute_ceilMultiple<std::numeric_limits<genType>::is_iec559, std::numeric_limits<genType>::is_signed>::call(Source, Multiple);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> ceilMultiple(vecType<T, P> const & Source, vecType<T, P> const & Multiple)
{
return detail::functor2<T, P, vecType>::call(ceilMultiple, Source, Multiple);
}
//////////////////////
// floorMultiple
template <typename genType>
GLM_FUNC_QUALIFIER genType floorMultiple(genType Source, genType Multiple)
{
return detail::compute_floorMultiple<std::numeric_limits<genType>::is_iec559, std::numeric_limits<genType>::is_signed>::call(Source, Multiple);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> floorMultiple(vecType<T, P> const & Source, vecType<T, P> const & Multiple)
{
return detail::functor2<T, P, vecType>::call(floorMultiple, Source, Multiple);
}
//////////////////////
// roundMultiple
template <typename genType>
GLM_FUNC_QUALIFIER genType roundMultiple(genType Source, genType Multiple)
{
return detail::compute_roundMultiple<std::numeric_limits<genType>::is_iec559, std::numeric_limits<genType>::is_signed>::call(Source, Multiple);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> roundMultiple(vecType<T, P> const & Source, vecType<T, P> const & Multiple)
{
return detail::functor2<T, P, vecType>::call(roundMultiple, Source, Multiple);
}
}//namespace glm