/// @ref gtc_quaternion /// @file glm/gtc/quaternion.hpp /// /// @see core (dependence) /// @see gtc_half_float (dependence) /// @see gtc_constants (dependence) /// /// @defgroup gtc_quaternion GLM_GTC_quaternion /// @ingroup gtc /// /// @brief Defines a templated quaternion type and several quaternion operations. /// /// <glm/gtc/quaternion.hpp> need to be included to use these functionalities. #pragma once // Dependency: #include "../mat3x3.hpp" #include "../mat4x4.hpp" #include "../vec3.hpp" #include "../vec4.hpp" #include "../gtc/constants.hpp" #if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) # pragma message("GLM: GLM_GTC_quaternion extension included") #endif namespace glm { /// @addtogroup gtc_quaternion /// @{ template <typename T, precision P = defaultp> struct tquat { // -- Implementation detail -- typedef tquat<T, P> type; typedef T value_type; // -- Data -- # if GLM_HAS_ALIGNED_TYPE # if GLM_COMPILER & GLM_COMPILER_GCC # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wpedantic" # endif # if GLM_COMPILER & GLM_COMPILER_CLANG # pragma clang diagnostic push # pragma clang diagnostic ignored "-Wgnu-anonymous-struct" # pragma clang diagnostic ignored "-Wnested-anon-types" # endif union { struct { T x, y, z, w;}; typename detail::storage<T, sizeof(T) * 4, detail::is_aligned<P>::value>::type data; }; # if GLM_COMPILER & GLM_COMPILER_CLANG # pragma clang diagnostic pop # endif # if GLM_COMPILER & GLM_COMPILER_GCC # pragma GCC diagnostic pop # endif # else T x, y, z, w; # endif // -- Component accesses -- typedef length_t length_type; /// Return the count of components of a quaternion GLM_FUNC_DECL static length_type length(){return 4;} GLM_FUNC_DECL T & operator[](length_type i); GLM_FUNC_DECL T const & operator[](length_type i) const; // -- Implicit basic constructors -- GLM_FUNC_DECL GLM_CONSTEXPR tquat() GLM_DEFAULT_CTOR; GLM_FUNC_DECL GLM_CONSTEXPR tquat(tquat<T, P> const & q) GLM_DEFAULT; template <precision Q> GLM_FUNC_DECL GLM_CONSTEXPR tquat(tquat<T, Q> const & q); // -- Explicit basic constructors -- GLM_FUNC_DECL GLM_CONSTEXPR_CTOR explicit tquat(ctor); GLM_FUNC_DECL GLM_CONSTEXPR tquat(T const & s, tvec3<T, P> const & v); GLM_FUNC_DECL GLM_CONSTEXPR tquat(T const & w, T const & x, T const & y, T const & z); // -- Conversion constructors -- template <typename U, precision Q> GLM_FUNC_DECL GLM_CONSTEXPR GLM_EXPLICIT tquat(tquat<U, Q> const & q); /// Explicit conversion operators # if GLM_HAS_EXPLICIT_CONVERSION_OPERATORS GLM_FUNC_DECL explicit operator tmat3x3<T, P>(); GLM_FUNC_DECL explicit operator tmat4x4<T, P>(); # endif /// Create a quaternion from two normalized axis /// /// @param u A first normalized axis /// @param v A second normalized axis /// @see gtc_quaternion /// @see http://lolengine.net/blog/2013/09/18/beautiful-maths-quaternion-from-vectors GLM_FUNC_DECL tquat(tvec3<T, P> const & u, tvec3<T, P> const & v); /// Build a quaternion from euler angles (pitch, yaw, roll), in radians. GLM_FUNC_DECL GLM_EXPLICIT tquat(tvec3<T, P> const & eulerAngles); GLM_FUNC_DECL GLM_EXPLICIT tquat(tmat3x3<T, P> const & m); GLM_FUNC_DECL GLM_EXPLICIT tquat(tmat4x4<T, P> const & m); // -- Unary arithmetic operators -- GLM_FUNC_DECL tquat<T, P> & operator=(tquat<T, P> const & m) GLM_DEFAULT; template <typename U> GLM_FUNC_DECL tquat<T, P> & operator=(tquat<U, P> const & m); template <typename U> GLM_FUNC_DECL tquat<T, P> & operator+=(tquat<U, P> const & q); template <typename U> GLM_FUNC_DECL tquat<T, P> & operator-=(tquat<U, P> const & q); template <typename U> GLM_FUNC_DECL tquat<T, P> & operator*=(tquat<U, P> const & q); template <typename U> GLM_FUNC_DECL tquat<T, P> & operator*=(U s); template <typename U> GLM_FUNC_DECL tquat<T, P> & operator/=(U s); }; // -- Unary bit operators -- template <typename T, precision P> GLM_FUNC_DECL tquat<T, P> operator+(tquat<T, P> const & q); template <typename T, precision P> GLM_FUNC_DECL tquat<T, P> operator-(tquat<T, P> const & q); // -- Binary operators -- template <typename T, precision P> GLM_FUNC_DECL tquat<T, P> operator+(tquat<T, P> const & q, tquat<T, P> const & p); template <typename T, precision P> GLM_FUNC_DECL tquat<T, P> operator*(tquat<T, P> const & q, tquat<T, P> const & p); template <typename T, precision P> GLM_FUNC_DECL tvec3<T, P> operator*(tquat<T, P> const & q, tvec3<T, P> const & v); template <typename T, precision P> GLM_FUNC_DECL tvec3<T, P> operator*(tvec3<T, P> const & v, tquat<T, P> const & q); template <typename T, precision P> GLM_FUNC_DECL tvec4<T, P> operator*(tquat<T, P> const & q, tvec4<T, P> const & v); template <typename T, precision P> GLM_FUNC_DECL tvec4<T, P> operator*(tvec4<T, P> const & v, tquat<T, P> const & q); template <typename T, precision P> GLM_FUNC_DECL tquat<T, P> operator*(tquat<T, P> const & q, T const & s); template <typename T, precision P> GLM_FUNC_DECL tquat<T, P> operator*(T const & s, tquat<T, P> const & q); template <typename T, precision P> GLM_FUNC_DECL tquat<T, P> operator/(tquat<T, P> const & q, T const & s); // -- Boolean operators -- template <typename T, precision P> GLM_FUNC_DECL bool operator==(tquat<T, P> const & q1, tquat<T, P> const & q2); template <typename T, precision P> GLM_FUNC_DECL bool operator!=(tquat<T, P> const & q1, tquat<T, P> const & q2); /// Returns the length of the quaternion. /// /// @see gtc_quaternion template <typename T, precision P> GLM_FUNC_DECL T length(tquat<T, P> const & q); /// Returns the normalized quaternion. /// /// @see gtc_quaternion template <typename T, precision P> GLM_FUNC_DECL tquat<T, P> normalize(tquat<T, P> const & q); /// Returns dot product of q1 and q2, i.e., q1[0] * q2[0] + q1[1] * q2[1] + ... /// /// @see gtc_quaternion template <typename T, precision P, template <typename, precision> class quatType> GLM_FUNC_DECL T dot(quatType<T, P> const & x, quatType<T, P> const & y); /// Spherical linear interpolation of two quaternions. /// The interpolation is oriented and the rotation is performed at constant speed. /// For short path spherical linear interpolation, use the slerp function. /// /// @param x A quaternion /// @param y A quaternion /// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1]. /// @tparam T Value type used to build the quaternion. Supported: half, float or double. /// @see gtc_quaternion /// @see - slerp(tquat<T, P> const & x, tquat<T, P> const & y, T const & a) template <typename T, precision P> GLM_FUNC_DECL tquat<T, P> mix(tquat<T, P> const & x, tquat<T, P> const & y, T a); /// Linear interpolation of two quaternions. /// The interpolation is oriented. /// /// @param x A quaternion /// @param y A quaternion /// @param a Interpolation factor. The interpolation is defined in the range [0, 1]. /// @tparam T Value type used to build the quaternion. Supported: half, float or double. /// @see gtc_quaternion template <typename T, precision P> GLM_FUNC_DECL tquat<T, P> lerp(tquat<T, P> const & x, tquat<T, P> const & y, T a); /// Spherical linear interpolation of two quaternions. /// The interpolation always take the short path and the rotation is performed at constant speed. /// /// @param x A quaternion /// @param y A quaternion /// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1]. /// @tparam T Value type used to build the quaternion. Supported: half, float or double. /// @see gtc_quaternion template <typename T, precision P> GLM_FUNC_DECL tquat<T, P> slerp(tquat<T, P> const & x, tquat<T, P> const & y, T a); /// Returns the q conjugate. /// /// @see gtc_quaternion template <typename T, precision P> GLM_FUNC_DECL tquat<T, P> conjugate(tquat<T, P> const & q); /// Returns the q inverse. /// /// @see gtc_quaternion template <typename T, precision P> GLM_FUNC_DECL tquat<T, P> inverse(tquat<T, P> const & q); /// Rotates a quaternion from a vector of 3 components axis and an angle. /// /// @param q Source orientation /// @param angle Angle expressed in radians. /// @param axis Axis of the rotation /// /// @see gtc_quaternion template <typename T, precision P> GLM_FUNC_DECL tquat<T, P> rotate(tquat<T, P> const & q, T const & angle, tvec3<T, P> const & axis); /// Returns euler angles, pitch as x, yaw as y, roll as z. /// The result is expressed in radians if GLM_FORCE_RADIANS is defined or degrees otherwise. /// /// @see gtc_quaternion template <typename T, precision P> GLM_FUNC_DECL tvec3<T, P> eulerAngles(tquat<T, P> const & x); /// Returns roll value of euler angles expressed in radians. /// /// @see gtx_quaternion template <typename T, precision P> GLM_FUNC_DECL T roll(tquat<T, P> const & x); /// Returns pitch value of euler angles expressed in radians. /// /// @see gtx_quaternion template <typename T, precision P> GLM_FUNC_DECL T pitch(tquat<T, P> const & x); /// Returns yaw value of euler angles expressed in radians. /// /// @see gtx_quaternion template <typename T, precision P> GLM_FUNC_DECL T yaw(tquat<T, P> const & x); /// Converts a quaternion to a 3 * 3 matrix. /// /// @see gtc_quaternion template <typename T, precision P> GLM_FUNC_DECL tmat3x3<T, P> mat3_cast(tquat<T, P> const & x); /// Converts a quaternion to a 4 * 4 matrix. /// /// @see gtc_quaternion template <typename T, precision P> GLM_FUNC_DECL tmat4x4<T, P> mat4_cast(tquat<T, P> const & x); /// Converts a 3 * 3 matrix to a quaternion. /// /// @see gtc_quaternion template <typename T, precision P> GLM_FUNC_DECL tquat<T, P> quat_cast(tmat3x3<T, P> const & x); /// Converts a 4 * 4 matrix to a quaternion. /// /// @see gtc_quaternion template <typename T, precision P> GLM_FUNC_DECL tquat<T, P> quat_cast(tmat4x4<T, P> const & x); /// Returns the quaternion rotation angle. /// /// @see gtc_quaternion template <typename T, precision P> GLM_FUNC_DECL T angle(tquat<T, P> const & x); /// Returns the q rotation axis. /// /// @see gtc_quaternion template <typename T, precision P> GLM_FUNC_DECL tvec3<T, P> axis(tquat<T, P> const & x); /// Build a quaternion from an angle and a normalized axis. /// /// @param angle Angle expressed in radians. /// @param axis Axis of the quaternion, must be normalized. /// /// @see gtc_quaternion template <typename T, precision P> GLM_FUNC_DECL tquat<T, P> angleAxis(T const & angle, tvec3<T, P> const & axis); /// Returns the component-wise comparison result of x < y. /// /// @tparam quatType Floating-point quaternion types. /// /// @see gtc_quaternion template <typename T, precision P> GLM_FUNC_DECL tvec4<bool, P> lessThan(tquat<T, P> const & x, tquat<T, P> const & y); /// Returns the component-wise comparison of result x <= y. /// /// @tparam quatType Floating-point quaternion types. /// /// @see gtc_quaternion template <typename T, precision P> GLM_FUNC_DECL tvec4<bool, P> lessThanEqual(tquat<T, P> const & x, tquat<T, P> const & y); /// Returns the component-wise comparison of result x > y. /// /// @tparam quatType Floating-point quaternion types. /// /// @see gtc_quaternion template <typename T, precision P> GLM_FUNC_DECL tvec4<bool, P> greaterThan(tquat<T, P> const & x, tquat<T, P> const & y); /// Returns the component-wise comparison of result x >= y. /// /// @tparam quatType Floating-point quaternion types. /// /// @see gtc_quaternion template <typename T, precision P> GLM_FUNC_DECL tvec4<bool, P> greaterThanEqual(tquat<T, P> const & x, tquat<T, P> const & y); /// Returns the component-wise comparison of result x == y. /// /// @tparam quatType Floating-point quaternion types. /// /// @see gtc_quaternion template <typename T, precision P> GLM_FUNC_DECL tvec4<bool, P> equal(tquat<T, P> const & x, tquat<T, P> const & y); /// Returns the component-wise comparison of result x != y. /// /// @tparam quatType Floating-point quaternion types. /// /// @see gtc_quaternion template <typename T, precision P> GLM_FUNC_DECL tvec4<bool, P> notEqual(tquat<T, P> const & x, tquat<T, P> const & y); /// Returns true if x holds a NaN (not a number) /// representation in the underlying implementation's set of /// floating point representations. Returns false otherwise, /// including for implementations with no NaN /// representations. /// /// /!\ When using compiler fast math, this function may fail. /// /// @tparam genType Floating-point scalar or vector types. template <typename T, precision P> GLM_FUNC_DECL tvec4<bool, P> isnan(tquat<T, P> const & x); /// Returns true if x holds a positive infinity or negative /// infinity representation in the underlying implementation's /// set of floating point representations. Returns false /// otherwise, including for implementations with no infinity /// representations. /// /// @tparam genType Floating-point scalar or vector types. template <typename T, precision P> GLM_FUNC_DECL tvec4<bool, P> isinf(tquat<T, P> const & x); /// @} } //namespace glm #include "quaternion.inl"