/// @ref gtx_matrix_interpolation /// @file glm/gtx/matrix_interpolation.hpp namespace glm { template <typename T, precision P> GLM_FUNC_QUALIFIER void axisAngle ( tmat4x4<T, P> const & mat, tvec3<T, P> & axis, T & angle ) { T epsilon = (T)0.01; T epsilon2 = (T)0.1; if((abs(mat[1][0] - mat[0][1]) < epsilon) && (abs(mat[2][0] - mat[0][2]) < epsilon) && (abs(mat[2][1] - mat[1][2]) < epsilon)) { if ((abs(mat[1][0] + mat[0][1]) < epsilon2) && (abs(mat[2][0] + mat[0][2]) < epsilon2) && (abs(mat[2][1] + mat[1][2]) < epsilon2) && (abs(mat[0][0] + mat[1][1] + mat[2][2] - (T)3.0) < epsilon2)) { angle = (T)0.0; axis.x = (T)1.0; axis.y = (T)0.0; axis.z = (T)0.0; return; } angle = static_cast<T>(3.1415926535897932384626433832795); T xx = (mat[0][0] + (T)1.0) / (T)2.0; T yy = (mat[1][1] + (T)1.0) / (T)2.0; T zz = (mat[2][2] + (T)1.0) / (T)2.0; T xy = (mat[1][0] + mat[0][1]) / (T)4.0; T xz = (mat[2][0] + mat[0][2]) / (T)4.0; T yz = (mat[2][1] + mat[1][2]) / (T)4.0; if((xx > yy) && (xx > zz)) { if (xx < epsilon) { axis.x = (T)0.0; axis.y = (T)0.7071; axis.z = (T)0.7071; } else { axis.x = sqrt(xx); axis.y = xy / axis.x; axis.z = xz / axis.x; } } else if (yy > zz) { if (yy < epsilon) { axis.x = (T)0.7071; axis.y = (T)0.0; axis.z = (T)0.7071; } else { axis.y = sqrt(yy); axis.x = xy / axis.y; axis.z = yz / axis.y; } } else { if (zz < epsilon) { axis.x = (T)0.7071; axis.y = (T)0.7071; axis.z = (T)0.0; } else { axis.z = sqrt(zz); axis.x = xz / axis.z; axis.y = yz / axis.z; } } return; } T s = sqrt((mat[2][1] - mat[1][2]) * (mat[2][1] - mat[1][2]) + (mat[2][0] - mat[0][2]) * (mat[2][0] - mat[0][2]) + (mat[1][0] - mat[0][1]) * (mat[1][0] - mat[0][1])); if (glm::abs(s) < T(0.001)) s = (T)1.0; angle = acos((mat[0][0] + mat[1][1] + mat[2][2] - (T)1.0) / (T)2.0); axis.x = (mat[1][2] - mat[2][1]) / s; axis.y = (mat[2][0] - mat[0][2]) / s; axis.z = (mat[0][1] - mat[1][0]) / s; } template <typename T, precision P> GLM_FUNC_QUALIFIER tmat4x4<T, P> axisAngleMatrix ( tvec3<T, P> const & axis, T const angle ) { T c = cos(angle); T s = sin(angle); T t = static_cast<T>(1) - c; tvec3<T, P> n = normalize(axis); return tmat4x4<T, P>( t * n.x * n.x + c, t * n.x * n.y + n.z * s, t * n.x * n.z - n.y * s, T(0), t * n.x * n.y - n.z * s, t * n.y * n.y + c, t * n.y * n.z + n.x * s, T(0), t * n.x * n.z + n.y * s, t * n.y * n.z - n.x * s, t * n.z * n.z + c, T(0), T(0), T(0), T(0), T(1) ); } template <typename T, precision P> GLM_FUNC_QUALIFIER tmat4x4<T, P> extractMatrixRotation ( tmat4x4<T, P> const & mat ) { return tmat4x4<T, P>( mat[0][0], mat[0][1], mat[0][2], 0.0, mat[1][0], mat[1][1], mat[1][2], 0.0, mat[2][0], mat[2][1], mat[2][2], 0.0, 0.0, 0.0, 0.0, 1.0 ); } template <typename T, precision P> GLM_FUNC_QUALIFIER tmat4x4<T, P> interpolate ( tmat4x4<T, P> const & m1, tmat4x4<T, P> const & m2, T const delta ) { tmat4x4<T, P> m1rot = extractMatrixRotation(m1); tmat4x4<T, P> dltRotation = m2 * transpose(m1rot); tvec3<T, P> dltAxis; T dltAngle; axisAngle(dltRotation, dltAxis, dltAngle); tmat4x4<T, P> out = axisAngleMatrix(dltAxis, dltAngle * delta) * m1rot; out[3][0] = m1[3][0] + delta * (m2[3][0] - m1[3][0]); out[3][1] = m1[3][1] + delta * (m2[3][1] - m1[3][1]); out[3][2] = m1[3][2] + delta * (m2[3][2] - m1[3][2]); return out; } }//namespace glm