// // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of NVIDIA CORPORATION nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Copyright (c) 2008-2019 NVIDIA Corporation. All rights reserved. // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. #include "ExtRevoluteJoint.h" #include "ExtConstraintHelper.h" #include "PxPhysics.h" using namespace physx; using namespace Ext; PxRevoluteJoint* physx::PxRevoluteJointCreate(PxPhysics& physics, PxRigidActor* actor0, const PxTransform& localFrame0, PxRigidActor* actor1, const PxTransform& localFrame1) { PX_CHECK_AND_RETURN_NULL(localFrame0.isSane(), "PxRevoluteJointCreate: local frame 0 is not a valid transform"); PX_CHECK_AND_RETURN_NULL(localFrame1.isSane(), "PxRevoluteJointCreate: local frame 1 is not a valid transform"); PX_CHECK_AND_RETURN_NULL(actor0 != actor1, "PxRevoluteJointCreate: actors must be different"); PX_CHECK_AND_RETURN_NULL((actor0 && actor0->is<PxRigidBody>()) || (actor1 && actor1->is<PxRigidBody>()), "PxRevoluteJointCreate: at least one actor must be dynamic"); RevoluteJoint* j; PX_NEW_SERIALIZED(j, RevoluteJoint)(physics.getTolerancesScale(), actor0, localFrame0, actor1, localFrame1); if(j->attach(physics, actor0, actor1)) return j; PX_DELETE(j); return NULL; } PxReal RevoluteJoint::getAngle() const { return getTwistAngle_Internal(); } PxReal RevoluteJoint::getVelocity() const { return getRelativeAngularVelocity().magnitude(); } PxJointAngularLimitPair RevoluteJoint::getLimit() const { return data().limit; } void RevoluteJoint::setLimit(const PxJointAngularLimitPair& limit) { PX_CHECK_AND_RETURN(limit.isValid(), "PxRevoluteJoint::setLimit: limit invalid"); PX_CHECK_AND_RETURN(limit.lower>-PxTwoPi && limit.upper<PxTwoPi , "PxRevoluteJoint::twist limit must be strictly between -2*PI and 2*PI"); data().limit = limit; markDirty(); } PxReal RevoluteJoint::getDriveVelocity() const { return data().driveVelocity; } void RevoluteJoint::setDriveVelocity(PxReal velocity, bool autowake) { PX_CHECK_AND_RETURN(PxIsFinite(velocity), "PxRevoluteJoint::setDriveVelocity: invalid parameter"); data().driveVelocity = velocity; if(autowake) wakeUpActors(); markDirty(); } PxReal RevoluteJoint::getDriveForceLimit() const { return data().driveForceLimit; } void RevoluteJoint::setDriveForceLimit(PxReal forceLimit) { PX_CHECK_AND_RETURN(PxIsFinite(forceLimit), "PxRevoluteJoint::setDriveForceLimit: invalid parameter"); data().driveForceLimit = forceLimit; markDirty(); } PxReal RevoluteJoint::getDriveGearRatio() const { return data().driveGearRatio; } void RevoluteJoint::setDriveGearRatio(PxReal gearRatio) { PX_CHECK_AND_RETURN(PxIsFinite(gearRatio) && gearRatio>0, "PxRevoluteJoint::setDriveGearRatio: invalid parameter"); data().driveGearRatio = gearRatio; markDirty(); } void RevoluteJoint::setProjectionAngularTolerance(PxReal tolerance) { PX_CHECK_AND_RETURN(PxIsFinite(tolerance) && tolerance>=0 && tolerance<=PxPi, "PxRevoluteJoint::setProjectionAngularTolerance: invalid parameter"); data().projectionAngularTolerance = tolerance; markDirty(); } PxReal RevoluteJoint::getProjectionAngularTolerance() const { return data().projectionAngularTolerance; } void RevoluteJoint::setProjectionLinearTolerance(PxReal tolerance) { PX_CHECK_AND_RETURN(PxIsFinite(tolerance) && tolerance >=0, "PxRevoluteJoint::setProjectionLinearTolerance: invalid parameter"); data().projectionLinearTolerance = tolerance; markDirty(); } PxReal RevoluteJoint::getProjectionLinearTolerance() const { return data().projectionLinearTolerance; } PxRevoluteJointFlags RevoluteJoint::getRevoluteJointFlags(void) const { return data().jointFlags; } void RevoluteJoint::setRevoluteJointFlags(PxRevoluteJointFlags flags) { data().jointFlags = flags; } void RevoluteJoint::setRevoluteJointFlag(PxRevoluteJointFlag::Enum flag, bool value) { if(value) data().jointFlags |= flag; else data().jointFlags &= ~flag; markDirty(); } bool RevoluteJoint::attach(PxPhysics &physics, PxRigidActor* actor0, PxRigidActor* actor1) { mPxConstraint = physics.createConstraint(actor0, actor1, *this, sShaders, sizeof(RevoluteJointData)); return mPxConstraint!=NULL; } void RevoluteJoint::exportExtraData(PxSerializationContext& stream) { if(mData) { stream.alignData(PX_SERIAL_ALIGN); stream.writeData(mData, sizeof(RevoluteJointData)); } stream.writeName(mName); } void RevoluteJoint::importExtraData(PxDeserializationContext& context) { if(mData) mData = context.readExtraData<RevoluteJointData, PX_SERIAL_ALIGN>(); context.readName(mName); } void RevoluteJoint::resolveReferences(PxDeserializationContext& context) { setPxConstraint(resolveConstraintPtr(context, getPxConstraint(), getConnector(), sShaders)); } RevoluteJoint* RevoluteJoint::createObject(PxU8*& address, PxDeserializationContext& context) { RevoluteJoint* obj = new (address) RevoluteJoint(PxBaseFlag::eIS_RELEASABLE); address += sizeof(RevoluteJoint); obj->importExtraData(context); obj->resolveReferences(context); return obj; } // global function to share the joint shaders with API capture const PxConstraintShaderTable* Ext::GetRevoluteJointShaderTable() { return &RevoluteJoint::getConstraintShaderTable(); } //~PX_SERIALIZATION static void RevoluteJointProject(const void* constantBlock, PxTransform& bodyAToWorld, PxTransform& bodyBToWorld, bool projectToA) { const RevoluteJointData& data = *reinterpret_cast<const RevoluteJointData*>(constantBlock); PxTransform cA2w, cB2w, cB2cA, projected; joint::computeDerived(data, bodyAToWorld, bodyBToWorld, cA2w, cB2w, cB2cA, false); bool linearTrunc, angularTrunc; projected.p = joint::truncateLinear(cB2cA.p, data.projectionLinearTolerance, linearTrunc); PxQuat swing, twist, projSwing; Ps::separateSwingTwist(cB2cA.q, swing, twist); projSwing = joint::truncateAngular(swing, PxSin(data.projectionAngularTolerance/2), PxCos(data.projectionAngularTolerance/2), angularTrunc); if(linearTrunc || angularTrunc) { projected.q = projSwing * twist; joint::projectTransforms(bodyAToWorld, bodyBToWorld, cA2w, cB2w, projected, data, projectToA); } } static PxQuat computeTwist(const PxTransform& cA2w, const PxTransform& cB2w) { // PT: following code is the same as this part of the "getAngle" function: // const PxQuat q = getRelativeTransform().q; // PxQuat swing, twist; // Ps::separateSwingTwist(q, swing, twist); // But it's done a little bit more efficiently since we don't need the swing quat. // PT: rotation part of "const PxTransform cB2cA = cA2w.transformInv(cB2w);" const PxQuat cB2cAq = cA2w.q.getConjugate() * cB2w.q; // PT: twist part of "Ps::separateSwingTwist(cB2cAq,swing,twist)" (more or less) return PxQuat(cB2cAq.x, 0.0f, 0.0f, cB2cAq.w); } // PT: this version is similar to the "getAngle" function, but the twist is computed slightly differently. static PX_FORCE_INLINE PxReal computePhi(const PxTransform& cA2w, const PxTransform& cB2w) { PxQuat twist = computeTwist(cA2w, cB2w); twist.normalize(); PxReal angle = twist.getAngle(); if(twist.x<0.0f) angle = -angle; return angle; } static void RevoluteJointVisualize(PxConstraintVisualizer& viz, const void* constantBlock, const PxTransform& body0Transform, const PxTransform& body1Transform, PxU32 flags) { const RevoluteJointData& data = *reinterpret_cast<const RevoluteJointData*>(constantBlock); PxTransform cA2w, cB2w; joint::computeJointFrames(cA2w, cB2w, data, body0Transform, body1Transform); if(flags & PxConstraintVisualizationFlag::eLOCAL_FRAMES) viz.visualizeJointFrames(cA2w, cB2w); if((data.jointFlags & PxRevoluteJointFlag::eLIMIT_ENABLED) && (flags & PxConstraintVisualizationFlag::eLIMITS)) { const PxReal angle = computePhi(cA2w, cB2w); const PxReal pad = data.limit.contactDistance; const PxReal low = data.limit.lower; const PxReal high = data.limit.upper; const bool active = isLimitActive(data.limit, pad, angle, low, high); viz.visualizeAngularLimit(cA2w, data.limit.lower, data.limit.upper, active); } } static PxU32 RevoluteJointSolverPrep(Px1DConstraint* constraints, PxVec3& body0WorldOffset, PxU32 /*maxConstraints*/, PxConstraintInvMassScale& invMassScale, const void* constantBlock, const PxTransform& bA2w, const PxTransform& bB2w, bool useExtendedLimits, PxVec3& cA2wOut, PxVec3& cB2wOut) { const RevoluteJointData& data = *reinterpret_cast<const RevoluteJointData*>(constantBlock); PxTransform cA2w, cB2w; joint::ConstraintHelper ch(constraints, invMassScale, cA2w, cB2w, body0WorldOffset, data, bA2w, bB2w); const PxJointAngularLimitPair& limit = data.limit; const bool limitEnabled = data.jointFlags & PxRevoluteJointFlag::eLIMIT_ENABLED; const bool limitIsLocked = limitEnabled && limit.lower >= limit.upper; // PT: it is a mistake to use the neighborhood operator since it // prevents us from using the quat's double-cover feature. if(!useExtendedLimits && cB2w.q.dot(cA2w.q)<0.0f) cB2w.q = -cB2w.q; PxVec3 ra, rb; ch.prepareLockedAxes(cA2w.q, cB2w.q, cA2w.transformInv(cB2w.p), 7, PxU32(limitIsLocked ? 7 : 6), ra, rb); cA2wOut = ra + bA2w.p; cB2wOut = rb + bB2w.p; if(limitIsLocked) return ch.getCount(); const PxVec3 axis = cA2w.rotate(PxVec3(1.0f, 0.0f, 0.0f)); if(data.jointFlags & PxRevoluteJointFlag::eDRIVE_ENABLED) { Px1DConstraint* c = ch.getConstraintRow(); c->solveHint = PxConstraintSolveHint::eNONE; c->linear0 = PxVec3(0.0f); c->angular0 = -axis; c->linear1 = PxVec3(0.0f); c->angular1 = -axis * data.driveGearRatio; c->velocityTarget = data.driveVelocity; c->minImpulse = -data.driveForceLimit; c->maxImpulse = data.driveForceLimit; c->flags |= Px1DConstraintFlag::eANGULAR_CONSTRAINT; if(data.jointFlags & PxRevoluteJointFlag::eDRIVE_FREESPIN) { if(data.driveVelocity > 0.0f) c->minImpulse = 0.0f; if(data.driveVelocity < 0.0f) c->maxImpulse = 0.0f; } c->flags |= Px1DConstraintFlag::eHAS_DRIVE_LIMIT; } if(limitEnabled) { const PxReal phi = computePhi(cA2w, cB2w); ch.anglePair(phi, data.limit.lower, data.limit.upper, data.limit.contactDistance, axis, limit); } return ch.getCount(); } PxConstraintShaderTable Ext::RevoluteJoint::sShaders = { RevoluteJointSolverPrep, RevoluteJointProject, RevoluteJointVisualize, PxConstraintFlag::Enum(0) };