// // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of NVIDIA CORPORATION nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Copyright (c) 2008-2019 NVIDIA Corporation. All rights reserved. // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. #ifndef PXFOUNDATION_PXVEC4_H #define PXFOUNDATION_PXVEC4_H /** \addtogroup foundation @{ */ #include "foundation/PxMath.h" #include "foundation/PxVec3.h" #include "foundation/PxSharedAssert.h" /** \brief 4 Element vector class. This is a 4-dimensional vector class with public data members. */ #if !PX_DOXYGEN namespace physx { #endif class PxVec4 { public: /** \brief default constructor leaves data uninitialized. */ PX_CUDA_CALLABLE PX_INLINE PxVec4() { } /** \brief zero constructor. */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec4(PxZERO r) : x(0.0f), y(0.0f), z(0.0f), w(0.0f) { PX_UNUSED(r); } /** \brief Assigns scalar parameter to all elements. Useful to initialize to zero or one. \param[in] a Value to assign to elements. */ explicit PX_CUDA_CALLABLE PX_INLINE PxVec4(float a) : x(a), y(a), z(a), w(a) { } /** \brief Initializes from 3 scalar parameters. \param[in] nx Value to initialize X component. \param[in] ny Value to initialize Y component. \param[in] nz Value to initialize Z component. \param[in] nw Value to initialize W component. */ PX_CUDA_CALLABLE PX_INLINE PxVec4(float nx, float ny, float nz, float nw) : x(nx), y(ny), z(nz), w(nw) { } /** \brief Initializes from 3 scalar parameters. \param[in] v Value to initialize the X, Y, and Z components. \param[in] nw Value to initialize W component. */ PX_CUDA_CALLABLE PX_INLINE PxVec4(const PxVec3& v, float nw) : x(v.x), y(v.y), z(v.z), w(nw) { } /** \brief Initializes from an array of scalar parameters. \param[in] v Value to initialize with. */ explicit PX_CUDA_CALLABLE PX_INLINE PxVec4(const float v[]) : x(v[0]), y(v[1]), z(v[2]), w(v[3]) { } /** \brief Copy ctor. */ PX_CUDA_CALLABLE PX_INLINE PxVec4(const PxVec4& v) : x(v.x), y(v.y), z(v.z), w(v.w) { } // Operators /** \brief Assignment operator */ PX_CUDA_CALLABLE PX_INLINE PxVec4& operator=(const PxVec4& p) { x = p.x; y = p.y; z = p.z; w = p.w; return *this; } /** \brief element access */ PX_CUDA_CALLABLE PX_INLINE float& operator[](unsigned int index) { PX_SHARED_ASSERT(index <= 3); return reinterpret_cast<float*>(this)[index]; } /** \brief element access */ PX_CUDA_CALLABLE PX_INLINE const float& operator[](unsigned int index) const { PX_SHARED_ASSERT(index <= 3); return reinterpret_cast<const float*>(this)[index]; } /** \brief returns true if the two vectors are exactly equal. */ PX_CUDA_CALLABLE PX_INLINE bool operator==(const PxVec4& v) const { return x == v.x && y == v.y && z == v.z && w == v.w; } /** \brief returns true if the two vectors are not exactly equal. */ PX_CUDA_CALLABLE PX_INLINE bool operator!=(const PxVec4& v) const { return x != v.x || y != v.y || z != v.z || w != v.w; } /** \brief tests for exact zero vector */ PX_CUDA_CALLABLE PX_INLINE bool isZero() const { return x == 0 && y == 0 && z == 0 && w == 0; } /** \brief returns true if all 3 elems of the vector are finite (not NAN or INF, etc.) */ PX_CUDA_CALLABLE PX_INLINE bool isFinite() const { return PxIsFinite(x) && PxIsFinite(y) && PxIsFinite(z) && PxIsFinite(w); } /** \brief is normalized - used by API parameter validation */ PX_CUDA_CALLABLE PX_INLINE bool isNormalized() const { const float unitTolerance = 1e-4f; return isFinite() && PxAbs(magnitude() - 1) < unitTolerance; } /** \brief returns the squared magnitude Avoids calling PxSqrt()! */ PX_CUDA_CALLABLE PX_INLINE float magnitudeSquared() const { return x * x + y * y + z * z + w * w; } /** \brief returns the magnitude */ PX_CUDA_CALLABLE PX_INLINE float magnitude() const { return PxSqrt(magnitudeSquared()); } /** \brief negation */ PX_CUDA_CALLABLE PX_INLINE PxVec4 operator-() const { return PxVec4(-x, -y, -z, -w); } /** \brief vector addition */ PX_CUDA_CALLABLE PX_INLINE PxVec4 operator+(const PxVec4& v) const { return PxVec4(x + v.x, y + v.y, z + v.z, w + v.w); } /** \brief vector difference */ PX_CUDA_CALLABLE PX_INLINE PxVec4 operator-(const PxVec4& v) const { return PxVec4(x - v.x, y - v.y, z - v.z, w - v.w); } /** \brief scalar post-multiplication */ PX_CUDA_CALLABLE PX_INLINE PxVec4 operator*(float f) const { return PxVec4(x * f, y * f, z * f, w * f); } /** \brief scalar division */ PX_CUDA_CALLABLE PX_INLINE PxVec4 operator/(float f) const { f = 1.0f / f; return PxVec4(x * f, y * f, z * f, w * f); } /** \brief vector addition */ PX_CUDA_CALLABLE PX_INLINE PxVec4& operator+=(const PxVec4& v) { x += v.x; y += v.y; z += v.z; w += v.w; return *this; } /** \brief vector difference */ PX_CUDA_CALLABLE PX_INLINE PxVec4& operator-=(const PxVec4& v) { x -= v.x; y -= v.y; z -= v.z; w -= v.w; return *this; } /** \brief scalar multiplication */ PX_CUDA_CALLABLE PX_INLINE PxVec4& operator*=(float f) { x *= f; y *= f; z *= f; w *= f; return *this; } /** \brief scalar division */ PX_CUDA_CALLABLE PX_INLINE PxVec4& operator/=(float f) { f = 1.0f / f; x *= f; y *= f; z *= f; w *= f; return *this; } /** \brief returns the scalar product of this and other. */ PX_CUDA_CALLABLE PX_INLINE float dot(const PxVec4& v) const { return x * v.x + y * v.y + z * v.z + w * v.w; } /** return a unit vector */ PX_CUDA_CALLABLE PX_INLINE PxVec4 getNormalized() const { float m = magnitudeSquared(); return m > 0.0f ? *this * PxRecipSqrt(m) : PxVec4(0, 0, 0, 0); } /** \brief normalizes the vector in place */ PX_CUDA_CALLABLE PX_INLINE float normalize() { float m = magnitude(); if(m > 0.0f) *this /= m; return m; } /** \brief a[i] * b[i], for all i. */ PX_CUDA_CALLABLE PX_INLINE PxVec4 multiply(const PxVec4& a) const { return PxVec4(x * a.x, y * a.y, z * a.z, w * a.w); } /** \brief element-wise minimum */ PX_CUDA_CALLABLE PX_INLINE PxVec4 minimum(const PxVec4& v) const { return PxVec4(PxMin(x, v.x), PxMin(y, v.y), PxMin(z, v.z), PxMin(w, v.w)); } /** \brief element-wise maximum */ PX_CUDA_CALLABLE PX_INLINE PxVec4 maximum(const PxVec4& v) const { return PxVec4(PxMax(x, v.x), PxMax(y, v.y), PxMax(z, v.z), PxMax(w, v.w)); } PX_CUDA_CALLABLE PX_INLINE PxVec3 getXYZ() const { return PxVec3(x, y, z); } /** \brief set vector elements to zero */ PX_CUDA_CALLABLE PX_INLINE void setZero() { x = y = z = w = 0.0f; } float x, y, z, w; }; PX_CUDA_CALLABLE static PX_INLINE PxVec4 operator*(float f, const PxVec4& v) { return PxVec4(f * v.x, f * v.y, f * v.z, f * v.w); } #if !PX_DOXYGEN } // namespace physx #endif /** @} */ #endif // #ifndef PXFOUNDATION_PXVEC4_H