395 lines
8.6 KiB
C++
395 lines
8.6 KiB
C++
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions
|
|
// are met:
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
// * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Copyright (c) 2008-2019 NVIDIA Corporation. All rights reserved.
|
|
// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
|
|
// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.
|
|
|
|
#ifndef PXFOUNDATION_PXVEC3_H
|
|
#define PXFOUNDATION_PXVEC3_H
|
|
|
|
/** \addtogroup foundation
|
|
@{
|
|
*/
|
|
|
|
#include "foundation/PxMath.h"
|
|
|
|
#if !PX_DOXYGEN
|
|
namespace physx
|
|
{
|
|
#endif
|
|
|
|
/**
|
|
\brief 3 Element vector class.
|
|
|
|
This is a 3-dimensional vector class with public data members.
|
|
*/
|
|
class PxVec3
|
|
{
|
|
public:
|
|
/**
|
|
\brief default constructor leaves data uninitialized.
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3()
|
|
{
|
|
}
|
|
|
|
/**
|
|
\brief zero constructor.
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3(PxZERO r) : x(0.0f), y(0.0f), z(0.0f)
|
|
{
|
|
PX_UNUSED(r);
|
|
}
|
|
|
|
/**
|
|
\brief Assigns scalar parameter to all elements.
|
|
|
|
Useful to initialize to zero or one.
|
|
|
|
\param[in] a Value to assign to elements.
|
|
*/
|
|
explicit PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3(float a) : x(a), y(a), z(a)
|
|
{
|
|
}
|
|
|
|
/**
|
|
\brief Initializes from 3 scalar parameters.
|
|
|
|
\param[in] nx Value to initialize X component.
|
|
\param[in] ny Value to initialize Y component.
|
|
\param[in] nz Value to initialize Z component.
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3(float nx, float ny, float nz) : x(nx), y(ny), z(nz)
|
|
{
|
|
}
|
|
|
|
/**
|
|
\brief Copy ctor.
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3(const PxVec3& v) : x(v.x), y(v.y), z(v.z)
|
|
{
|
|
}
|
|
|
|
// Operators
|
|
|
|
/**
|
|
\brief Assignment operator
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3& operator=(const PxVec3& p)
|
|
{
|
|
x = p.x;
|
|
y = p.y;
|
|
z = p.z;
|
|
return *this;
|
|
}
|
|
|
|
/**
|
|
\brief element access
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE float& operator[](unsigned int index)
|
|
{
|
|
PX_SHARED_ASSERT(index <= 2);
|
|
|
|
return reinterpret_cast<float*>(this)[index];
|
|
}
|
|
|
|
/**
|
|
\brief element access
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE const float& operator[](unsigned int index) const
|
|
{
|
|
PX_SHARED_ASSERT(index <= 2);
|
|
|
|
return reinterpret_cast<const float*>(this)[index];
|
|
}
|
|
|
|
/**
|
|
\brief returns true if the two vectors are exactly equal.
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE bool operator==(const PxVec3& v) const
|
|
{
|
|
return x == v.x && y == v.y && z == v.z;
|
|
}
|
|
|
|
/**
|
|
\brief returns true if the two vectors are not exactly equal.
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE bool operator!=(const PxVec3& v) const
|
|
{
|
|
return x != v.x || y != v.y || z != v.z;
|
|
}
|
|
|
|
/**
|
|
\brief tests for exact zero vector
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE bool isZero() const
|
|
{
|
|
return x == 0.0f && y == 0.0f && z == 0.0f;
|
|
}
|
|
|
|
/**
|
|
\brief returns true if all 3 elems of the vector are finite (not NAN or INF, etc.)
|
|
*/
|
|
PX_CUDA_CALLABLE PX_INLINE bool isFinite() const
|
|
{
|
|
return PxIsFinite(x) && PxIsFinite(y) && PxIsFinite(z);
|
|
}
|
|
|
|
/**
|
|
\brief is normalized - used by API parameter validation
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE bool isNormalized() const
|
|
{
|
|
const float unitTolerance = 1e-4f;
|
|
return isFinite() && PxAbs(magnitude() - 1) < unitTolerance;
|
|
}
|
|
|
|
/**
|
|
\brief returns the squared magnitude
|
|
|
|
Avoids calling PxSqrt()!
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE float magnitudeSquared() const
|
|
{
|
|
return x * x + y * y + z * z;
|
|
}
|
|
|
|
/**
|
|
\brief returns the magnitude
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE float magnitude() const
|
|
{
|
|
return PxSqrt(magnitudeSquared());
|
|
}
|
|
|
|
/**
|
|
\brief negation
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 operator-() const
|
|
{
|
|
return PxVec3(-x, -y, -z);
|
|
}
|
|
|
|
/**
|
|
\brief vector addition
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 operator+(const PxVec3& v) const
|
|
{
|
|
return PxVec3(x + v.x, y + v.y, z + v.z);
|
|
}
|
|
|
|
/**
|
|
\brief vector difference
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 operator-(const PxVec3& v) const
|
|
{
|
|
return PxVec3(x - v.x, y - v.y, z - v.z);
|
|
}
|
|
|
|
/**
|
|
\brief scalar post-multiplication
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 operator*(float f) const
|
|
{
|
|
return PxVec3(x * f, y * f, z * f);
|
|
}
|
|
|
|
/**
|
|
\brief scalar division
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 operator/(float f) const
|
|
{
|
|
f = 1.0f / f;
|
|
return PxVec3(x * f, y * f, z * f);
|
|
}
|
|
|
|
/**
|
|
\brief vector addition
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3& operator+=(const PxVec3& v)
|
|
{
|
|
x += v.x;
|
|
y += v.y;
|
|
z += v.z;
|
|
return *this;
|
|
}
|
|
|
|
/**
|
|
\brief vector difference
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3& operator-=(const PxVec3& v)
|
|
{
|
|
x -= v.x;
|
|
y -= v.y;
|
|
z -= v.z;
|
|
return *this;
|
|
}
|
|
|
|
/**
|
|
\brief scalar multiplication
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3& operator*=(float f)
|
|
{
|
|
x *= f;
|
|
y *= f;
|
|
z *= f;
|
|
return *this;
|
|
}
|
|
/**
|
|
\brief scalar division
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3& operator/=(float f)
|
|
{
|
|
f = 1.0f / f;
|
|
x *= f;
|
|
y *= f;
|
|
z *= f;
|
|
return *this;
|
|
}
|
|
|
|
/**
|
|
\brief returns the scalar product of this and other.
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE float dot(const PxVec3& v) const
|
|
{
|
|
return x * v.x + y * v.y + z * v.z;
|
|
}
|
|
|
|
/**
|
|
\brief cross product
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 cross(const PxVec3& v) const
|
|
{
|
|
return PxVec3(y * v.z - z * v.y, z * v.x - x * v.z, x * v.y - y * v.x);
|
|
}
|
|
|
|
/** return a unit vector */
|
|
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 getNormalized() const
|
|
{
|
|
const float m = magnitudeSquared();
|
|
return m > 0.0f ? *this * PxRecipSqrt(m) : PxVec3(0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
\brief normalizes the vector in place
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE float normalize()
|
|
{
|
|
const float m = magnitude();
|
|
if(m > 0.0f)
|
|
*this /= m;
|
|
return m;
|
|
}
|
|
|
|
/**
|
|
\brief normalizes the vector in place. Does nothing if vector magnitude is under PX_NORMALIZATION_EPSILON.
|
|
Returns vector magnitude if >= PX_NORMALIZATION_EPSILON and 0.0f otherwise.
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE float normalizeSafe()
|
|
{
|
|
const float mag = magnitude();
|
|
if(mag < PX_NORMALIZATION_EPSILON)
|
|
return 0.0f;
|
|
*this *= 1.0f / mag;
|
|
return mag;
|
|
}
|
|
|
|
/**
|
|
\brief normalizes the vector in place. Asserts if vector magnitude is under PX_NORMALIZATION_EPSILON.
|
|
returns vector magnitude.
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE float normalizeFast()
|
|
{
|
|
const float mag = magnitude();
|
|
PX_SHARED_ASSERT(mag >= PX_NORMALIZATION_EPSILON);
|
|
*this *= 1.0f / mag;
|
|
return mag;
|
|
}
|
|
|
|
/**
|
|
\brief a[i] * b[i], for all i.
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 multiply(const PxVec3& a) const
|
|
{
|
|
return PxVec3(x * a.x, y * a.y, z * a.z);
|
|
}
|
|
|
|
/**
|
|
\brief element-wise minimum
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 minimum(const PxVec3& v) const
|
|
{
|
|
return PxVec3(PxMin(x, v.x), PxMin(y, v.y), PxMin(z, v.z));
|
|
}
|
|
|
|
/**
|
|
\brief returns MIN(x, y, z);
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE float minElement() const
|
|
{
|
|
return PxMin(x, PxMin(y, z));
|
|
}
|
|
|
|
/**
|
|
\brief element-wise maximum
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 maximum(const PxVec3& v) const
|
|
{
|
|
return PxVec3(PxMax(x, v.x), PxMax(y, v.y), PxMax(z, v.z));
|
|
}
|
|
|
|
/**
|
|
\brief returns MAX(x, y, z);
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE float maxElement() const
|
|
{
|
|
return PxMax(x, PxMax(y, z));
|
|
}
|
|
|
|
/**
|
|
\brief returns absolute values of components;
|
|
*/
|
|
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 abs() const
|
|
{
|
|
return PxVec3(PxAbs(x), PxAbs(y), PxAbs(z));
|
|
}
|
|
|
|
float x, y, z;
|
|
};
|
|
|
|
PX_CUDA_CALLABLE static PX_FORCE_INLINE PxVec3 operator*(float f, const PxVec3& v)
|
|
{
|
|
return PxVec3(f * v.x, f * v.y, f * v.z);
|
|
}
|
|
|
|
#if !PX_DOXYGEN
|
|
} // namespace physx
|
|
#endif
|
|
|
|
/** @} */
|
|
#endif // #ifndef PXFOUNDATION_PXVEC3_H
|