Space-Project/src/main.cpp
2021-02-23 00:03:44 +01:00

1233 lines
40 KiB
C++

#include <iostream>
#include <cmath>
#include <ctime>
#include <vector>
#include <assimp/Importer.hpp>
#include <assimp/scene.h>
#include <assimp/postprocess.h>
#include "glew.h"
#include "freeglut.h"
#include "glm.hpp"
#include "ext.hpp"
#include "Physics.h"
#include "Shader_Loader.h"
#include "Camera.h"
#include "Texture.h"
#include "model.h"
#include <WinUser.h>
static PxFilterFlags simulationFilterShader(PxFilterObjectAttributes attributes0,
PxFilterData filterData0, PxFilterObjectAttributes attributes1, PxFilterData filterData1,
PxPairFlags& pairFlags, const void* constantBlock, PxU32 constantBlockSize)
{
pairFlags =
PxPairFlag::eCONTACT_DEFAULT | // default contact processing
PxPairFlag::eNOTIFY_CONTACT_POINTS | // contact points will be available in onContact callback
PxPairFlag::eNOTIFY_TOUCH_PERSISTS |
PxPairFlag::eNOTIFY_TOUCH_FOUND; // onContact callback will be called for this pair
return physx::PxFilterFlag::eDEFAULT;
}
class SimulationEventCallback : public PxSimulationEventCallback
{
public:
void onContact(const PxContactPairHeader& pairHeader,
const PxContactPair* pairs, PxU32 nbPairs)
{
// HINT: You can check which actors are in contact
// using pairHeader.actors[0] and pairHeader.actors[1]
auto ac = pairHeader.actors[0];
auto ac2 = pairHeader.actors[1];
/*if (ac->userData == renderables.back() || ac2->userData == renderables.back())
{
std::cout << "Liczba CP:" << nbPairs << std::endl;
for (PxU32 i = 0; i < nbPairs; i++)
{
const PxContactPair& cp = pairs[i];
// HINT: two get the contact points, use
// PxContactPair::extractContacts
std::vector<PxContactPairPoint> buffer;
for (int i = 0; i < cp.contactCount; i++)
buffer.push_back(PxContactPairPoint());
cp.extractContacts(&buffer[0], sizeof(buffer));
for (int i = 0; i < buffer.size(); i++)
{
auto position = buffer[i].position;
std::cout << position.x << ' ' << position.y << ' ' << position.x << std::endl;
}
}
}*/
}
virtual void onConstraintBreak(PxConstraintInfo* constraints, PxU32 count) {}
virtual void onWake(PxActor** actors, PxU32 count) {}
virtual void onSleep(PxActor** actors, PxU32 count) {}
virtual void onTrigger(PxTriggerPair* pairs, PxU32 count) {}
virtual void onAdvance(const PxRigidBody*const* bodyBuffer, const PxTransform* poseBuffer, const PxU32 count) {}
};
// Initalization of physical scene (PhysX)
SimulationEventCallback simulationEventCallback;
Physics pxScene(0.0 /* gravity (m/s^2) */, simulationFilterShader,
&simulationEventCallback);
// fixed timestep for stable and deterministic simulation
const double physicsStepTime = 1.f / 60.f;
double physicsTimeToProcess = 0;
int SCR_WIDTH = 1240;
int SCR_HEIGHT = 720;
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
int winId;
Core::Shader_Loader shaderLoader;
//shader programs
GLuint programTex;
GLuint programSkybox;
GLuint programSun;
GLuint programBlur;
GLuint programBloom;
GLuint programNormal;
GLuint programParticle;
GLuint programAsteroid;
//bloompart
unsigned int pingpongFBO[2];
unsigned int pingpongColorbuffers[2];
unsigned int FBO;
unsigned int colorBuffers[2];
//particlepart
GLuint VertexArrayID;
float lastTime;
static GLfloat* g_particule_position_size_data;
static GLubyte* g_particule_color_data;
GLuint particle_vertex_buffer;
GLuint particles_position_buffer;
GLuint particles_color_buffer;
bool bothEngines = true;
//textures
GLuint sunTexture;
GLuint earthTexture;
GLuint marsTexture;
GLuint moonTexture;
GLuint skyboxTexture;
GLuint particleTexture;
//assimp
std::shared_ptr<Model> cube;
std::shared_ptr<Model> sphere;
std::shared_ptr<Model> corvette;
std::shared_ptr<Model> asteroid;
std::shared_ptr<Model> crewmate;
//asteroids
GLuint bufferAsteroids;
int asteroidAmount = 100;
int engineLightTimer = 50;
float frustumScale = 1.f;
//camera
float cameraAngle = 0;
glm::vec3 cameraPos = glm::vec3(-6, 0, 0);
glm::vec3 cameraDir;
glm::vec3 cameraSide;
glm::mat4 cameraMatrix, perspectiveMatrix;
glm::vec3 sunPos = glm::vec3(10.0f, 0.0f, -5.0f);
glm::vec3 sunPos2 = glm::vec3(25.0f, -1.0f, 10.0f);
//physics
physx::PxShape* rectangleShape;
physx::PxShape* sphereShape;
physx::PxMaterial* material;
std::vector<physx::PxRigidDynamic*> dynamicObjects;
std::vector<physx::PxRigidStatic*> staticObjects;
physx::PxRigidDynamic* getActor(std::string name);
//particlepart
struct Particle {
glm::vec3 pos, speed;
unsigned char r, g, b, a; // Color
float size, angle, weight;
float life; // Remaining life of the particle. if <0 : dead and unused.
float cameradistance; // *Squared* distance to the camera. if dead : -1.0f
bool operator<(const Particle& that) const {
return this->cameradistance > that.cameradistance;
}
};
const int MaxParticles = 1000;
Particle ParticlesContainer[MaxParticles];
int LastUsedParticle = 0;
void SortParticles() {
std::sort(&ParticlesContainer[0], &ParticlesContainer[MaxParticles]);
}
int FindUnusedParticle() {
for (int i = LastUsedParticle; i < MaxParticles; i++) {
if (ParticlesContainer[i].life < 0) {
LastUsedParticle = i;
return i;
}
}
for (int i = 0; i < LastUsedParticle; i++) {
if (ParticlesContainer[i].life < 0) {
LastUsedParticle = i;
return i;
}
}
return 0; // All particles are taken, override the first one
}
struct Object
{
std::string name;
glm::mat4 modelM;
glm::mat4 invModelM;
std::shared_ptr<Model> modelParent;
GLuint textureID;
GLuint shaderID;
glm::vec3 color;
bool isDynamic;
};
//Light
struct Light {
glm::vec3 position;
glm::vec3 color;
float intensity;
};
struct Asteroid
{
glm::mat4 model;
glm::mat3 inv;
};
//vectors
std::vector<Object> objects;
std::vector<Light> lights;
std::vector<Asteroid> asteroids;
std::vector<glm::mat4> asteroidsMatrixes;
//wczytywanie skyboxa (musi byc jpg!)
std::vector<std::string> faces
{
"skybox/right.jpg",
"skybox/left.jpg",
"skybox/top.jpg",
"skybox/bottom.jpg",
"skybox/front.jpg",
"skybox/back.jpg"
};
void keyboard(unsigned char key, int x, int y)
{
auto actor = getActor("Corvette");
auto move = actor->getLinearVelocity();
physx::PxVec3 dir = physx::PxVec3(cameraDir.x, cameraDir.y, cameraDir.z);
glm::vec3 cross = glm::cross(cameraDir, glm::vec3(0, 0, 1));
physx::PxVec3 dirCross = physx::PxVec3(cross.x, cross.y, cross.z);
float angleSpeed = 0.1f;
float moveSpeed = 0.1f;
switch (key)
{
case 'q':
{
cameraAngle -= angleSpeed;
lights[3].intensity = 0.05;
engineLightTimer = 0;
break;
}
case 'e':
{
cameraAngle += angleSpeed;
lights[2].intensity = 0.05;
engineLightTimer = 0;
break;
}
case 'w':
{
actor->setLinearVelocity(move + dir);
//cameraPos += cameraDir * moveSpeed;
lights[2].intensity = 0.05;
lights[3].intensity = 0.05;
engineLightTimer = 0;
break;
}
case 's': actor->setLinearVelocity(move - dir); break;
//cameraPos -= cameraDir * moveSpeed; break;
case 'd': actor->setLinearVelocity(move + dirCross); break;
//cameraPos += glm::cross(cameraDir, glm::vec3(0, 1, 0)) * moveSpeed; break;
case 'a': actor->setLinearVelocity(move - dirCross); break;
//cameraPos -= glm::cross(cameraDir, glm::vec3(0, 1, 0)) * moveSpeed; break;
case 'z': actor->setLinearVelocity(PxVec3(move.x, move.y + 3, move.z)); break;
//cameraPos += glm::cross(cameraDir, glm::vec3(0, 0, 1)) * moveSpeed; break;
case 'x': actor->setLinearVelocity(PxVec3(move.x, move.y - 3, move.z)); break;
//cameraPos -= glm::cross(cameraDir, glm::vec3(0, 0, 1)) * moveSpeed; break;
case ' ':actor->setLinearVelocity(PxVec3(0, 0, 0)); break;
case 27: glutDestroyWindow(winId); break;
}
}
unsigned int quadVAO = 0;
unsigned int quadVBO;
void renderQuad()
{
if (quadVAO == 0)
{
float quadVertices[] = {
-1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
-1.0f, -1.0f, 0.0f, 0.0f, 0.0f,
1.0f, 1.0f, 0.0f, 1.0f, 1.0f,
1.0f, -1.0f, 0.0f, 1.0f, 0.0f,
};
glGenVertexArrays(1, &quadVAO);
glGenBuffers(1, &quadVBO);
glBindVertexArray(quadVAO);
glBindBuffer(GL_ARRAY_BUFFER, quadVBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(quadVertices), &quadVertices, GL_STATIC_DRAW);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)(3 * sizeof(float)));
}
glBindVertexArray(quadVAO);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
glBindVertexArray(0);
}
glm::mat4 orbitAsteroids(float time, glm::vec3 objectPos, glm::mat4 asteroidModelMatrix, glm::vec3 orbit);
void updateAsteroid()
{
for (int i=0; i<asteroids.size();i++)
{
asteroids[i].model = orbitAsteroids(lastTime, sunPos, asteroidsMatrixes[i], glm::vec3(0.0f, 1.0f, 0.0f));
asteroids[i].inv = glm::transpose(glm::inverse(glm::mat3(asteroids[i].model)));
}
glBindBuffer(GL_ARRAY_BUFFER, bufferAsteroids);
glBufferData(GL_ARRAY_BUFFER, asteroidAmount * sizeof(Asteroid), &asteroids[0], GL_DYNAMIC_DRAW);
for (unsigned int i = 0; i < asteroid->meshes.size(); i++)
{
unsigned int VAO = asteroid->meshes[i].VAO;
glBindVertexArray(VAO);
// set attribute pointers for matrix (4 times vec4)
glEnableVertexAttribArray(5);
glVertexAttribPointer(5, 4, GL_FLOAT, GL_FALSE, sizeof(Asteroid), (void*)0);
glEnableVertexAttribArray(6);
glVertexAttribPointer(6, 4, GL_FLOAT, GL_FALSE, sizeof(Asteroid), (void*)(sizeof(glm::vec4)));
glEnableVertexAttribArray(7);
glVertexAttribPointer(7, 4, GL_FLOAT, GL_FALSE, sizeof(Asteroid), (void*)(2 * sizeof(glm::vec4)));
glEnableVertexAttribArray(8);
glVertexAttribPointer(8, 4, GL_FLOAT, GL_FALSE, sizeof(Asteroid), (void*)(3 * sizeof(glm::vec4)));
glEnableVertexAttribArray(9);
glVertexAttribPointer(9, 3, GL_FLOAT, GL_FALSE, sizeof(Asteroid), (void*)(4 * sizeof(glm::vec4)));
glEnableVertexAttribArray(10);
glVertexAttribPointer(10, 3, GL_FLOAT, GL_FALSE, sizeof(Asteroid), (void*)(4 * sizeof(glm::vec4) + sizeof(glm::vec3)));
glEnableVertexAttribArray(11);
glVertexAttribPointer(11, 3, GL_FLOAT, GL_FALSE, sizeof(Asteroid), (void*)(4 * sizeof(glm::vec4) + 2 * sizeof(glm::vec3)));
glVertexAttribDivisor(5, 1);
glVertexAttribDivisor(6, 1);
glVertexAttribDivisor(7, 1);
glVertexAttribDivisor(8, 1);
glVertexAttribDivisor(9, 1);
glVertexAttribDivisor(10, 1);
glVertexAttribDivisor(11, 1);
glBindVertexArray(0);
}
}
glm::mat4 createCameraMatrix()
{
cameraDir = glm::vec3(cosf(cameraAngle), 0.0f, sinf(cameraAngle));
glm::vec3 up = glm::vec3(0, 1, 0);
cameraSide = glm::cross(cameraDir, up);
return Core::createViewMatrix(cameraPos, cameraDir, up);
}
//funkcja rysujaca modele za pomoca assimpa
void drawFromAssimpModel(GLuint program, std::shared_ptr<Model> model, glm::mat4 modelMatrix)
{
glUseProgram(program);
glm::mat4 transformation = perspectiveMatrix * cameraMatrix * modelMatrix;
glUniformMatrix4fv(glGetUniformLocation(program, "modelMatrix"), 1, GL_FALSE, (float*)&modelMatrix);
glUniformMatrix4fv(glGetUniformLocation(program, "transformation"), 1, GL_FALSE, (float*)&transformation);
model->Draw(program);
glUseProgram(0);
}
//funkcja rysujaca modele, ktore nie maja wlasnej tekstury za pomoca assimpa
void drawFromAssimpTexture(GLuint program, std::shared_ptr<Model> model, glm::mat4 modelMatrix, GLuint texID)
{
glUseProgram(program);
glm::mat4 transformation = perspectiveMatrix * cameraMatrix * modelMatrix;
glUniformMatrix4fv(glGetUniformLocation(program, "modelMatrix"), 1, GL_FALSE, (float*)&modelMatrix);
glUniformMatrix4fv(glGetUniformLocation(program, "transformation"), 1, GL_FALSE, (float*)&transformation);
Core::SetActiveTexture(texID, "diffuseTexture", program, 0);
model->Draw(program);
glUseProgram(0);
}
void drawObject(Object & obj)
{
glUseProgram(obj.shaderID);
glm::mat4 transformation = perspectiveMatrix * cameraMatrix * obj.modelM;
glUniformMatrix4fv(glGetUniformLocation(obj.shaderID, "modelMatrix"), 1, GL_FALSE, (float*)&obj.modelM);
glUniformMatrix4fv(glGetUniformLocation(obj.shaderID, "transformation"), 1, GL_FALSE, (float*)&transformation);
glUniform3f(glGetUniformLocation(obj.shaderID, "objectColor"), obj.color.r, obj.color.g, obj.color.b);
if (obj.textureID != -1)
Core::SetActiveTexture(obj.textureID, "diffuseTexture", obj.shaderID, 0);
obj.modelParent->Draw(obj.shaderID);
glUseProgram(0);
}
void drawAsteroids()
{
glUseProgram(programAsteroid);
glUniformMatrix4fv(glGetUniformLocation(programAsteroid, "projection"), 1, GL_FALSE, (float*)&perspectiveMatrix);
glUniformMatrix4fv(glGetUniformLocation(programAsteroid, "view"), 1, GL_FALSE, (float*)&cameraMatrix);
asteroid->DrawInstances(programAsteroid, asteroidAmount);
}
glm::mat4 orbitAsteroids(float time, glm::vec3 objectPos, glm::mat4 asteroidModelMatrix, glm::vec3 orbit)
{
glm::mat4 orbitModelMatrix = glm::translate(objectPos);
orbitModelMatrix = glm::rotate(orbitModelMatrix, time / 100, orbit);
//orbitModelMatrix = glm::translate(asteroidModelMatrix, -objectPos) * orbitModelMatrix;
return orbitModelMatrix * asteroidModelMatrix;
}
//Skybox
unsigned int loadCubemap(std::vector<std::string> faces)
{
unsigned int textureID;
glGenTextures(1, &textureID);
glBindTexture(GL_TEXTURE_CUBE_MAP, textureID);
int width, height, nrChannels;
for (unsigned int i = 0; i < faces.size(); i++)
{
unsigned char* data = stbi_load(faces[i].c_str(), &width, &height, &nrChannels, 0);
if (data)
{
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i,
0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, data);
stbi_image_free(data);
}
else
{
std::cout << "Cubemap tex failed to load at path: " << faces[i] << std::endl;
stbi_image_free(data);
}
}
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
return textureID;
}
void drawSkybox(GLuint program, std::shared_ptr<Model> cubeModel, GLuint texID)
{
glUseProgram(program);
glDepthFunc(GL_LEQUAL);
glm::mat4 transformation = perspectiveMatrix * glm::mat4(glm::mat3(cameraMatrix));
glUniformMatrix4fv(glGetUniformLocation(program, "transformation"), 1, GL_FALSE, (float*)&transformation);
glUniform1i(glGetUniformLocation(program, "skybox"), 0);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_CUBE_MAP, texID);
cubeModel->Draw(program);
glDepthFunc(GL_LESS);
glUseProgram(0);
}
void drawParticles(int ParticlesCount, glm::mat4 &transformation)
{
glBindBuffer(GL_ARRAY_BUFFER, particles_position_buffer);
glBufferData(GL_ARRAY_BUFFER, MaxParticles * 4 * sizeof(GLfloat), NULL, GL_STREAM_DRAW); // Buffer orphaning, a common way to improve streaming perf. See above link for details.
glBufferSubData(GL_ARRAY_BUFFER, 0, ParticlesCount * sizeof(GLfloat) * 4, g_particule_position_size_data);
glBindBuffer(GL_ARRAY_BUFFER, particles_color_buffer);
glBufferData(GL_ARRAY_BUFFER, MaxParticles * 4 * sizeof(GLubyte), NULL, GL_STREAM_DRAW); // Buffer orphaning, a common way to improve streaming perf. See above link for details.
glBufferSubData(GL_ARRAY_BUFFER, 0, ParticlesCount * sizeof(GLubyte) * 4, g_particule_color_data);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, particleTexture);
glUniform1i(glGetUniformLocation(programParticle, "sprite"), 0);
glUniform3f(glGetUniformLocation(programParticle, "CameraRight_worldspace"), cameraSide.x, cameraSide.y, cameraSide.z);
glUniform3f(glGetUniformLocation(programParticle, "CameraUp_worldspace"), 0, 1, 0);
glUniformMatrix4fv(glGetUniformLocation(programParticle, "VP"), 1, GL_FALSE, &transformation[0][0]);
glEnableVertexAttribArray(0);
glBindBuffer(GL_ARRAY_BUFFER, particle_vertex_buffer);
glVertexAttribPointer(
0, // attribute. No particular reason for 0, but must match the layout in the shader.
3, // size
GL_FLOAT, // type
GL_FALSE, // normalized?
0, // stride
(void*)0 // array buffer offset
);
glEnableVertexAttribArray(1);
glBindBuffer(GL_ARRAY_BUFFER, particles_position_buffer);
glVertexAttribPointer(
1, // attribute. No particular reason for 1, but must match the layout in the shader.
4, // size : x + y + z + size => 4
GL_FLOAT, // type
GL_FALSE, // normalized?
0, // stride
(void*)0 // array buffer offset
);
glEnableVertexAttribArray(2);
glBindBuffer(GL_ARRAY_BUFFER, particles_color_buffer);
glVertexAttribPointer(
2, // attribute. No particular reason for 1, but must match the layout in the shader.
4, // size : r + g + b + a => 4
GL_UNSIGNED_BYTE, // type
GL_TRUE, // normalized? *** YES, this means that the unsigned char[4] will be accessible with a vec4 (floats) in the shader ***
0, // stride
(void*)0 // array buffer offset
);
glVertexAttribDivisor(0, 0); // particles vertices : always reuse the same 4 vertices -> 0
glVertexAttribDivisor(1, 1); // positions : one per quad (its center) -> 1
glVertexAttribDivisor(2, 1); // color : one per quad -> 1
glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, ParticlesCount);
glDisableVertexAttribArray(0);
glDisableVertexAttribArray(1);
glDisableVertexAttribArray(2);
}
void drawBloom()
{
glBindFramebuffer(GL_FRAMEBUFFER, 0);
bool horizontal = true, first_iteration = true;
unsigned int amount = 10;
glUseProgram(programBlur);
for (unsigned int i = 0; i < amount; i++)
{
glBindFramebuffer(GL_FRAMEBUFFER, pingpongFBO[horizontal]);
glUniform1i(glGetUniformLocation(programBlur, "horizontal"), horizontal);
glBindTexture(GL_TEXTURE_2D, first_iteration ? colorBuffers[1] : pingpongColorbuffers[!horizontal]);
renderQuad();
horizontal = !horizontal;
if (first_iteration)
first_iteration = false;
}
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glUseProgram(programBloom);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, colorBuffers[0]);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, pingpongColorbuffers[!horizontal]);
renderQuad();
}
glm::mat4 drawPlanet(float time, glm::vec3 sunPos, glm::vec3 orbit, glm::vec3 translation, glm::vec3 scale)
{
glm::mat4 planetModelMatrix = glm::mat4(1.0f);
planetModelMatrix = glm::translate(planetModelMatrix, sunPos);
planetModelMatrix = glm::rotate(planetModelMatrix, time, orbit);
planetModelMatrix = glm::translate(planetModelMatrix, translation);
planetModelMatrix = glm::scale(planetModelMatrix, scale);
return planetModelMatrix;
}
glm::mat4 drawMoon(glm::mat4 planetModelMatrix, float time, glm::vec3 orbit, glm::vec3 translation, glm::vec3 rotation, glm::vec3 scale)
{
glm::mat4 moonModelMatrix = glm::mat4(planetModelMatrix);
moonModelMatrix = glm::rotate(moonModelMatrix, time, orbit);
moonModelMatrix = glm::translate(moonModelMatrix, translation);
moonModelMatrix = glm::rotate(moonModelMatrix, time, rotation);
moonModelMatrix = glm::scale(moonModelMatrix, scale);
return moonModelMatrix;
}
Object* findObject(std::string name)
{
for (int i = 0; i < objects.size(); i++)
{
if (objects[i].name == name)
return &objects[i];
}
return nullptr;
}
physx::PxRigidDynamic* getActor(std::string name)
{
cout << "meh " << name << std::endl;
for (int i = 0; i < dynamicObjects.size(); i++)
{
cout << ((Object*)dynamicObjects[i]->userData)->name << std::endl <<std::flush;
if (((Object*)dynamicObjects[i]->userData)->name == name)
return dynamicObjects[i];
}
return nullptr;
}
void updateObjects()
{
Object* obj = findObject("Corvette");
glm::mat4 shipModelMatrix = obj->modelM;
//glm::translate(cameraPos + cameraDir * 0.7f + glm::vec3(0, -0.25f, 0)) * glm::rotate(-cameraAngle + glm::radians(90.0f), glm::vec3(0, 1, 0)) * glm::scale(glm::vec3(0.0001f));
//obj->modelM = shipModelMatrix;
obj->invModelM = glm::inverse(obj->modelM);
//glm::mat4 offset = glm::translate(shipModelMatrix, glm::vec3(0, 0, 1000));
//cameraPos = glm::vec3(offset[3][0], offset[3][1], offset[3][2]);
glm::mat4 engineLeft = glm::translate(shipModelMatrix, glm::vec3(450, 0, -1500));
lights[2].position = glm::vec3(engineLeft[3][0], engineLeft[3][1], engineLeft[3][2]);
glm::mat4 engineRight = glm::translate(shipModelMatrix, glm::vec3(-450, 0, -1500));
lights[3].position = glm::vec3(engineRight[3][0], engineRight[3][1], engineRight[3][2]);
/*
obj = findObject("Space Humster");
glm::mat4 crewmateModelMatrix = glm::translate(glm::vec3(0, 1, 1)) * glm::rotate(lastTime / 10, glm::vec3(1, 0, 1)) * glm::scale(glm::vec3(0.01));
obj->modelM = crewmateModelMatrix;
obj->invModelM = glm::inverse(crewmateModelMatrix);
*/
//earth & moon
glm::mat4 earthModelMatrix = drawPlanet(lastTime / 5.0f, sunPos*glm::vec3(1.5f, 1, 1), glm::vec3(0.0f, 1.0f, 0.0f), glm::vec3(-10.5f, 0.0f, -10.5f), glm::vec3(0.5f, 0.5f, 0.5f));
glm::mat4 moonModelMatrix = drawMoon(earthModelMatrix, lastTime / 2.0f, glm::vec3(1.0f, 0.0f, 0.0f), glm::vec3(0, 2, 2), glm::vec3(1.5f, 1.0f, 1.0f), glm::vec3(0.3f, 0.3f, 0.3f));
earthModelMatrix = glm::rotate(earthModelMatrix, lastTime / 5.0f, glm::vec3(0.0f, 0.0f, 0.1f));
obj = findObject("Moon");
obj->modelM = moonModelMatrix;
obj->invModelM = glm::inverse(moonModelMatrix);
obj = findObject("Earth");
obj->modelM = earthModelMatrix;
obj->invModelM = glm::inverse(earthModelMatrix);
obj = findObject("Mars");
glm::mat4 marsModelMatrix = drawPlanet(lastTime / 5.0f, sunPos2, glm::vec3(0.0f, 1.0f, 0.0f), glm::vec3(-6.5f, 0.0f, -6.5f), glm::vec3(0.4f, 0.4f, 0.4f));
marsModelMatrix = glm::rotate(marsModelMatrix, lastTime / 3.0f, glm::vec3(0.0f, 0.0f, 1.0f));
obj->modelM = marsModelMatrix;
obj->invModelM = glm::inverse(marsModelMatrix);
}
void updatePhysics()
{
auto actorFlags = PxActorTypeFlag::eRIGID_DYNAMIC;// | PxActorTypeFlag::eRIGID_STATIC;
PxU32 nbActors = pxScene.scene->getNbActors(actorFlags);
if (nbActors)
{
std::vector<PxRigidActor*> actors(nbActors);
pxScene.scene->getActors(actorFlags, (PxActor**)&actors[0], nbActors);
for (auto actor : actors)
{
// We use the userData of the objects to set up the model matrices
// of proper renderables.
if (!actor->userData) continue;
Object *obj = (Object*)actor->userData;
// get world matrix of the object (actor)
PxMat44 transform = actor->getGlobalPose();
auto &c0 = transform.column0;
auto &c1 = transform.column1;
auto &c2 = transform.column2;
auto &c3 = transform.column3;
// set up the model matrix used for the rendering
obj->modelM = glm::mat4(
c0.x, c0.y, c0.z, c0.w,
c1.x, c1.y, c1.z, c1.w,
c2.x, c2.y, c2.z, c2.w,
c3.x, c3.y, c3.z, c3.w);
}
}
}
void updateLights(GLuint program)
{
for (int i = 0; i < lights.size(); i++)
{
std::string col = "pointLights[" + std::to_string(i) + "].color";
std::string pos = "pointLights[" + std::to_string(i) + "].position";
std::string ins = "pointLights[" + std::to_string(i) + "].intensity";
glUniform3f(glGetUniformLocation(program, col.c_str()), lights[i].color.x, lights[i].color.y, lights[i].color.z);
glUniform3f(glGetUniformLocation(program, pos.c_str()), lights[i].position.x, lights[i].position.y, lights[i].position.z);
glUniform1f(glGetUniformLocation(program, ins.c_str()), lights[i].intensity);
}
}
void renderScene()
{
cameraMatrix = createCameraMatrix();
perspectiveMatrix = Core::createPerspectiveMatrix(0.01f, 1000.0f, frustumScale);
float time = glutGet(GLUT_ELAPSED_TIME) / 1000.f;
double delta = time - lastTime;
lastTime = time;
if (delta < 1.f) {
physicsTimeToProcess += delta;
while (physicsTimeToProcess > 0) {
pxScene.step(physicsStepTime);
physicsTimeToProcess -= physicsStepTime;
}
}
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glBindFramebuffer(GL_FRAMEBUFFER, FBO);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glUseProgram(programTex);
glUniform1i(glGetUniformLocation(programTex,"LightsCount"), lights.size());
updateLights(programTex);
glUniform3f(glGetUniformLocation(programTex, "cameraPos"), cameraPos.x, cameraPos.y, cameraPos.z);
glUseProgram(programNormal);
glUniform1i(glGetUniformLocation(programNormal, "LightsCount"), lights.size());
updateLights(programNormal);
glUniform3f(glGetUniformLocation(programNormal, "cameraPos"), cameraPos.x, cameraPos.y, cameraPos.z);
glUseProgram(programSun);
glUniform3f(glGetUniformLocation(programSun, "cameraPos"), cameraPos.x, cameraPos.y, cameraPos.z);
updatePhysics();
updateObjects();
for (Object & obj : objects)
drawObject(obj);
//asteroidpart
glUseProgram(programAsteroid);
glUniform1i(glGetUniformLocation(programAsteroid, "LightsCount"), lights.size());
updateLights(programAsteroid);
glUniform3f(glGetUniformLocation(programAsteroid, "cameraPos"), cameraPos.x, cameraPos.y, cameraPos.z);
updateAsteroid();
drawAsteroids();
//particlepart
glUseProgram(programParticle);
glm::mat4 transformation = perspectiveMatrix * cameraMatrix;
int newparticles = 0;
if (engineLightTimer < 30)
{
engineLightTimer++;
newparticles = (int)(delta * 10000.0);
if (newparticles > (int)(0.016f * 10000.0))
newparticles = (int)(0.016f * 10000.0);
}
else
{
lights[2].intensity = 0.00001;
lights[3].intensity = 0.00001;
}
for (int i = 0; i < newparticles; i++) {
int particleIndex = FindUnusedParticle();
ParticlesContainer[particleIndex].life = 2.0f;
if (lights[2].intensity > 0.001 && lights[3].intensity > 0.001)
{
if (rand() % 2)
ParticlesContainer[particleIndex].pos = lights[2].position;
else
ParticlesContainer[particleIndex].pos = lights[3].position;
}
else if(lights[2].intensity > 0.001)
ParticlesContainer[particleIndex].pos = lights[2].position;
else if (lights[3].intensity > 0.001)
ParticlesContainer[particleIndex].pos = lights[3].position;
float spread = 0.8;
glm::vec3 maindir = -1 * cameraDir;
glm::vec3 randomdir = glm::vec3(
(rand() % 2000 - 1000.0f) / 5000.0f,
(rand() % 2000 - 1000.0f) / 5000.0f,
(rand() % 2000 - 1000.0f) / 5000.0f
);
ParticlesContainer[particleIndex].speed = maindir + randomdir * spread;
ParticlesContainer[particleIndex].r = rand() % 100 + 100;
ParticlesContainer[particleIndex].g = 0;
ParticlesContainer[particleIndex].b = rand() % 100 + 50;
ParticlesContainer[particleIndex].a = (rand() % 256) / 3;
ParticlesContainer[particleIndex].size = (rand() % 1000) / 50000.0f + 0.01f;
}
// Simulate all particles
int ParticlesCount = 0;
for (int i = 0; i < MaxParticles; i++) {
Particle& p = ParticlesContainer[i]; // shortcut
if (p.life > 0.0f) {
// Decrease life
p.life -= delta;
if (p.life > 0.0f) {
// Simulate simple physics : gravity only, no collisions
p.speed += glm::vec3(0.0f, 0.0f, 0.0f) * (float)delta * 0.5f;
p.pos += p.speed * (float)delta;
p.cameradistance = glm::length2(p.pos - cameraPos);
//ParticlesContainer[i].pos += glm::vec3(0.0f,10.0f, 0.0f) * (float)delta;
// Fill the GPU buffer
g_particule_position_size_data[4 * ParticlesCount + 0] = p.pos.x;
g_particule_position_size_data[4 * ParticlesCount + 1] = p.pos.y;
g_particule_position_size_data[4 * ParticlesCount + 2] = p.pos.z;
g_particule_position_size_data[4 * ParticlesCount + 3] = p.size;
g_particule_color_data[4 * ParticlesCount + 0] = p.r;
g_particule_color_data[4 * ParticlesCount + 1] = p.g;
g_particule_color_data[4 * ParticlesCount + 2] = p.b;
g_particule_color_data[4 * ParticlesCount + 3] = p.a;
}
else {
// Particles that just died will be put at the end of the buffer in SortParticles();
p.cameradistance = -1.0f;
}
ParticlesCount++;
}
}
SortParticles();
drawParticles(ParticlesCount, transformation);
drawSkybox(programSkybox, cube, skyboxTexture);
drawBloom();
glutSwapBuffers();
}
glm::vec3 getScale(glm::mat4 modelMatrix)
{
float x = glm::length(glm::vec3(modelMatrix[0][0], modelMatrix[1][0], modelMatrix[2][0]));
float y = glm::length(glm::vec3(modelMatrix[0][1], modelMatrix[1][1], modelMatrix[2][1]));
float z = glm::length(glm::vec3(modelMatrix[0][2], modelMatrix[1][2], modelMatrix[2][2]));
return glm::vec3(x, y, z);
}
glm::vec3 getPosition(glm::mat4 modelMatrix)
{
return glm::vec3(modelMatrix[3][0], modelMatrix[3][1], modelMatrix[3][2]);
}
physx::PxMat44 transformMat(glm::mat4 mat)
{
float newMat[16] = {mat[0][0], mat[0][1], mat[0][2], mat[0][3],
mat[1][0], mat[1][1], mat[1][2], mat[1][3],
mat[2][0], mat[2][1], mat[2][2], mat[2][3],
mat[3][0], mat[3][1], mat[3][2], mat[3][3] };
return PxMat44(newMat);
}
void initPhysics()
{
material = pxScene.physics->createMaterial(0.5, 0.5, 0.5);
sphereShape = pxScene.physics->createShape(PxSphereGeometry(1), *material);
rectangleShape = pxScene.physics->createShape(PxBoxGeometry(1, 1, 1), *material);
for (auto &obj : objects)
{
if (obj.isDynamic == true)
{
glm::vec3 pos = getPosition(obj.modelM);
dynamicObjects.emplace_back(pxScene.physics->createRigidDynamic(PxTransform(pos.x, pos.y, pos.z)));
dynamicObjects.back()->setGlobalPose(PxTransform(transformMat(obj.modelM)));
dynamicObjects.back()->attachShape(*rectangleShape);
dynamicObjects.back()->userData = &obj;
dynamicObjects.back()->setLinearVelocity(physx::PxVec3(0, 0, 0));
dynamicObjects.back()->setAngularVelocity(physx::PxVec3(0, 0, 0));
pxScene.scene->addActor(*dynamicObjects.back());
}
else
{
glm::vec3 pos = getPosition(obj.modelM);
staticObjects.emplace_back(pxScene.physics->createRigidStatic(PxTransform(pos.x, pos.y, pos.z)));
staticObjects.back()->setGlobalPose(PxTransform(transformMat(obj.modelM)));
staticObjects.back()->attachShape(*sphereShape);
staticObjects.back()->userData = &obj;
pxScene.scene->addActor(*staticObjects.back());
}
}
sphereShape->release();
rectangleShape->release();
}
void initAsteroids()
{
int amount = asteroidAmount;
float radius = 7.0;
float offset = 2.0f;
for (int i=0; i < amount; i++)
{
glm::mat4 model = glm::mat4(1.0f);
float angle = (float)i / (float)amount * 360.0f;
float displacement = (rand() % (int)(2 * offset * 100)) / 100.0f - offset;
float x = sin(angle) * radius + displacement;
displacement = (rand() % (int)(2 * offset * 100)) / 100.0f - offset;
float y = displacement * 0.1f;
displacement = (rand() % (int)(2 * offset * 100)) / 100.0f - offset;
float z = cos(angle) * radius + displacement;
model = glm::translate(model, glm::vec3(x, y, z));
float scale = (rand() % 20) / 100.0f + 0.05;
model = glm::scale(model, glm::vec3(scale));
float rotAngle = (rand() % 360);
model = glm::rotate(model, rotAngle, glm::vec3(0.4f, 0.6f, 0.8f));
Asteroid obj;
obj.model = model;
obj.inv = glm::transpose(glm::inverse(glm::mat3(model)));
asteroidsMatrixes.push_back(model);
asteroids.push_back(obj);
}
glGenBuffers(1, &bufferAsteroids);
updateAsteroid();
}
void initParticles()
{
glGenVertexArrays(1, &VertexArrayID);
glBindVertexArray(VertexArrayID);
g_particule_position_size_data = new GLfloat[MaxParticles * 4];
g_particule_color_data = new GLubyte[MaxParticles * 4];
for (int i = 0; i < MaxParticles; i++) {
ParticlesContainer[i].life = 1.0f;
ParticlesContainer[i].cameradistance = -1.0f;
}
static const GLfloat g_vertex_buffer_data[] = {
-0.3f, -0.3f, 0.0f,
0.3f, -0.3f, 0.0f,
-0.3f, 0.3f, 0.0f,
0.3f, 0.3f, 0.0f,
};
glGenBuffers(1, &particle_vertex_buffer);
glBindBuffer(GL_ARRAY_BUFFER, particle_vertex_buffer);
glBufferData(GL_ARRAY_BUFFER, sizeof(g_vertex_buffer_data), g_vertex_buffer_data, GL_STATIC_DRAW);
// The VBO containing the positions and sizes of the particles
glGenBuffers(1, &particles_position_buffer);
glBindBuffer(GL_ARRAY_BUFFER, particles_position_buffer);
// Initialize with empty (NULL) buffer : it will be updated later, each frame.
glBufferData(GL_ARRAY_BUFFER, MaxParticles * 4 * sizeof(GLfloat), NULL, GL_STREAM_DRAW);
// The VBO containing the colors of the particles
glGenBuffers(1, &particles_color_buffer);
glBindBuffer(GL_ARRAY_BUFFER, particles_color_buffer);
// Initialize with empty (NULL) buffer : it will be updated later, each frame.
glBufferData(GL_ARRAY_BUFFER, MaxParticles * 4 * sizeof(GLubyte), NULL, GL_STREAM_DRAW);
lastTime = glutGet(GLUT_ELAPSED_TIME) / 1000.f;
}
void initBloom()
{
glGenFramebuffers(1, &FBO);
glBindFramebuffer(GL_FRAMEBUFFER, FBO);
glGenTextures(2, colorBuffers);
for (unsigned int i = 0; i < 2; i++)
{
glBindTexture(GL_TEXTURE_2D, colorBuffers[i]);
glTexImage2D(
GL_TEXTURE_2D, 0, GL_RGBA16F, SCR_WIDTH, SCR_HEIGHT, 0, GL_RGBA, GL_FLOAT, NULL
);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glFramebufferTexture2D(
GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + i, GL_TEXTURE_2D, colorBuffers[i], 0
);
}
unsigned int rboDepth;
glGenRenderbuffers(1, &rboDepth);
glBindRenderbuffer(GL_RENDERBUFFER, rboDepth);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT, SCR_WIDTH, SCR_HEIGHT);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rboDepth);
unsigned int attachments[2] = { GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1 };
glDrawBuffers(2, attachments);
if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE)
std::cout << "Framebuffer not complete!" << std::endl;
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glGenFramebuffers(2, pingpongFBO);
glGenTextures(2, pingpongColorbuffers);
for (unsigned int i = 0; i < 2; i++)
{
glBindFramebuffer(GL_FRAMEBUFFER, pingpongFBO[i]);
glBindTexture(GL_TEXTURE_2D, pingpongColorbuffers[i]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F, SCR_WIDTH, SCR_HEIGHT, 0, GL_RGBA, GL_FLOAT, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, pingpongColorbuffers[i], 0);
if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE)
std::cout << "Framebuffer not complete!" << std::endl;
}
}
void initObjects()
{
Object obj;
glm::mat4 sunModelMatrix = glm::mat4(1.0f);
sunModelMatrix = glm::translate(sunModelMatrix, sunPos);
sunModelMatrix = glm::scale(sunModelMatrix, glm::vec3(3.0f, 3.0f, 3.0f));
obj.name = "BigSun";
obj.modelM = sunModelMatrix;
obj.invModelM = glm::inverse(sunModelMatrix);
obj.modelParent = sphere;
obj.textureID = sunTexture;
obj.shaderID = programSun;
obj.color = glm::vec3(3.5f, 3.8f, 3.8f);
obj.isDynamic = false;
objects.push_back(obj);
glm::mat4 sunModelMatrix2 = glm::mat4(1.0f);
sunModelMatrix2 = glm::translate(sunModelMatrix2, sunPos2);
obj.name = "SmollSun";
obj.modelM = sunModelMatrix2;
obj.invModelM = glm::inverse(sunModelMatrix2);
obj.color = glm::vec3(0.9f, 0.9f, 2.0f);
obj.isDynamic = false;
objects.push_back(obj);
glm::mat4 earthModelMatrix;
glm::mat4 moonModelMatrix;
Object planet;
planet.name = "Earth";
planet.modelM = earthModelMatrix;
planet.invModelM = glm::inverse(earthModelMatrix);
planet.modelParent = sphere;
planet.textureID = earthTexture;
planet.shaderID = programTex;
planet.color = glm::vec3(1.0f);
planet.isDynamic = false;
objects.push_back(planet);
glm::mat4 marsModelMatrix;
planet.name = "Mars";
planet.modelM = marsModelMatrix;
planet.invModelM = glm::inverse(marsModelMatrix);
planet.modelParent = sphere;
planet.textureID = marsTexture;
planet.shaderID = programTex;
planet.color = glm::vec3(1.0f);
planet.isDynamic = false;
objects.push_back(planet);
Object moon;
moon.name = "Moon";
moon.modelM = moonModelMatrix;
moon.invModelM = glm::inverse(moonModelMatrix);
moon.modelParent = sphere;
moon.textureID = moonTexture;
moon.shaderID = programTex;
moon.color = glm::vec3(1.0f);
moon.isDynamic = false;
objects.push_back(moon);
glm::mat4 crewmateModelMatrix = glm::translate(glm::vec3(0, 1, 1)) * glm::rotate(lastTime / 10, glm::vec3(1, 0, 1)) * glm::scale(glm::vec3(0.01));
Object crewmateObj;
crewmateObj.name = "Space Humster";
crewmateObj.modelM = crewmateModelMatrix;
crewmateObj.invModelM = glm::inverse(crewmateModelMatrix);
crewmateObj.modelParent = crewmate;
crewmateObj.shaderID = programNormal;
crewmateObj.color = glm::vec3(1.0f);
crewmateObj.isDynamic = true;
objects.push_back(crewmateObj);
glm::mat4 shipModelMatrix = glm::translate(cameraPos + cameraDir * 0.7f + glm::vec3(0, -0.25f, 0)) * glm::rotate(-cameraAngle + glm::radians(90.0f), glm::vec3(0, 1, 0)) * glm::scale(glm::vec3(0.0001f));;
Object ship;
ship.name = "Corvette";
ship.modelM = shipModelMatrix;
ship.invModelM = glm::inverse(shipModelMatrix);
ship.modelParent = corvette;
ship.shaderID = programNormal;
ship.color = glm::vec3(1.0f);
ship.isDynamic = true;
objects.push_back(ship);
}
void init()
{
glEnable(GL_DEPTH_TEST);
programTex = shaderLoader.CreateProgram("shaders/shader_tex.vert", "shaders/shader_tex.frag");
programNormal = shaderLoader.CreateProgram("shaders/shader_normal.vert", "shaders/shader_normal.frag");
programSkybox = shaderLoader.CreateProgram("shaders/shader_skybox.vert", "shaders/shader_skybox.frag");
programSun = shaderLoader.CreateProgram("shaders/shader_sun.vert", "shaders/shader_sun.frag");
programBlur = shaderLoader.CreateProgram("shaders/shader_blur.vert", "shaders/shader_blur.frag");
programBloom = shaderLoader.CreateProgram("shaders/shader_bloom.vert", "shaders/shader_bloom.frag");
programParticle = shaderLoader.CreateProgram("shaders/shader_particle.vert", "shaders/shader_particle.frag");
programAsteroid = shaderLoader.CreateProgram("shaders/shader_asteroid.vert", "shaders/shader_asteroid.frag");
glUseProgram(programBlur);
glUniform1i(glGetUniformLocation(programBlur, "image"), 0);
glUseProgram(programBloom);
glUniform1i(glGetUniformLocation(programBloom, "scene"), 0);
glUniform1i(glGetUniformLocation(programBloom, "bloomBlur"), 1);
glUniform2f(glGetUniformLocation(programBloom, "screenSize"), 1.0f / SCR_WIDTH, 1.0f / SCR_HEIGHT);
glUseProgram(0);
corvette = std::make_shared<Model>("models/Corvette-F3.obj");
crewmate = std::make_shared<Model>("models/space_humster.obj");
asteroid = std::make_shared<Model>("models/Asteroid_X.obj");
sphere = std::make_shared<Model>("models/sphere.obj");
cube = std::make_shared<Model>("models/cube.obj");
sunTexture = Core::LoadTexture("textures/sun.png");
earthTexture = Core::LoadTexture("textures/earth2.png");
moonTexture = Core::LoadTexture("textures/moon.png");
particleTexture = Core::LoadTexture("textures/sun.png");
marsTexture = Core::LoadTexture("models/textures/Mars/2k_mars.png");
skyboxTexture = loadCubemap(faces);
initParticles();
initBloom();
initObjects();
initAsteroids();
initPhysics();
Light l1;
l1.position = sunPos;
l1.color = glm::vec3(0.8f, 0.8f, 0.7f);
l1.intensity = 105;
lights.push_back(l1);
Light l2;
l2.position = sunPos2;
l2.color = glm::vec3(0.5f, 0.5f, 0.5f);
l2.intensity = 55;
lights.push_back(l2);
Light l3;
l3.position = glm::vec3(0);
l3.color = glm::vec3(1.0f, 0.0f, 0.0f);
l3.intensity = 0.001;
lights.push_back(l3);
Light l4;
l4.position = glm::vec3(0);
l4.color = glm::vec3(1.0f, 0.0f, 0.0f);
l4.intensity = 0.001;
lights.push_back(l4);
}
void shutdown()
{
shaderLoader.DeleteProgram(programSun);
shaderLoader.DeleteProgram(programParticle);
shaderLoader.DeleteProgram(programNormal);
shaderLoader.DeleteProgram(programAsteroid);
shaderLoader.DeleteProgram(programTex);
shaderLoader.DeleteProgram(programBloom);
shaderLoader.DeleteProgram(programBlur);
shaderLoader.DeleteProgram(programSkybox);
}
void onReshape(int width, int height)
{
SCR_WIDTH = width;
SCR_HEIGHT = height;
frustumScale = (float)width / (float)height;
glViewport(0, 0, width, height);
}
void idle()
{
glutPostRedisplay();
}
int main(int argc, char** argv)
{
int screenWidth = GetSystemMetrics(SM_CXSCREEN);
int screenHeight = GetSystemMetrics(SM_CYSCREEN);
SCR_WIDTH = screenWidth; SCR_HEIGHT = screenHeight;
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glutInitWindowPosition(0, 0);
glutInitWindowSize(SCR_WIDTH, SCR_HEIGHT);
winId = glutCreateWindow("GRK-PROJECT WIP");
glutFullScreen();
glewInit();
init();
glutKeyboardFunc(keyboard);
glutDisplayFunc(renderScene);
glutIdleFunc(idle);
glutReshapeFunc(onReshape);
glutMainLoop();
shutdown();
return 0;
}