2022-05-02 17:37:51 +02:00
|
|
|
node {
|
|
|
|
checkout scm
|
|
|
|
docker.image('s444452/ium:1.3').inside {
|
|
|
|
stage('Preparation') {
|
|
|
|
properties([
|
2022-05-02 18:25:14 +02:00
|
|
|
pipelineTriggers([upstream(threshold: hudson.model.Result.SUCCESS, upstreamProjects: "s444452-create-dataset")]),
|
2022-05-02 17:37:51 +02:00
|
|
|
parameters([
|
|
|
|
string(
|
|
|
|
defaultValue: ".",
|
|
|
|
description: 'Arguments for model training: arg1,arg2,arg3',
|
|
|
|
name: 'TRAIN_ARGS'
|
|
|
|
)
|
|
|
|
])
|
|
|
|
])
|
|
|
|
}
|
2022-05-02 18:25:14 +02:00
|
|
|
stage('Copy artifacts') {
|
2022-05-02 18:49:07 +02:00
|
|
|
copyArtifacts filter: 'train_data.csv', fingerprintArtifacts: true, projectName: 's444452-create-dataset'
|
|
|
|
copyArtifacts filter: 'test_data.csv', fingerprintArtifacts: true, projectName: 's444452-create-dataset'
|
|
|
|
copyArtifacts filter: 'dev_data.csv', fingerprintArtifacts: true, projectName: 's444452-create-dataset'
|
2022-05-02 18:25:14 +02:00
|
|
|
}
|
2022-05-02 17:37:51 +02:00
|
|
|
stage('Run script') {
|
|
|
|
withEnv(["TRAIN_ARGS=${params.TRAIN_ARGS}"]) {
|
|
|
|
sh "python3 Scripts/train_neural_network.py $TRAIN_ARGS"
|
|
|
|
}
|
|
|
|
}
|
2022-05-02 18:49:07 +02:00
|
|
|
stage('Archive artifacts') {
|
|
|
|
archiveArtifacts "neural_network_evaluation.txt, neural_network_model/**/*"
|
|
|
|
}
|
2022-05-02 17:37:51 +02:00
|
|
|
}
|
|
|
|
}
|