ium_444452/Scripts/evaluate_neural_network.py

114 lines
4.0 KiB
Python
Raw Normal View History

2022-05-03 00:04:19 +02:00
#!/usr/bin/python
import glob
import os
import sys
import pandas as pd
2022-05-04 18:08:52 +02:00
from keras.models import load_model
2022-05-03 00:04:19 +02:00
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
2022-05-04 18:08:52 +02:00
from sklearn.metrics import precision_score, recall_score, f1_score
import matplotlib.pyplot as plt
2022-05-08 13:30:09 +02:00
from sacred.observers import MongoObserver
from sacred.observers import FileStorageObserver
from sacred import Experiment
ex = Experiment(name='fake_job_classification_evaluation')
# ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@localhost:27017'))
ex.observers.append(FileStorageObserver('my_runs'))
build_number = sys.argv[1]
data_path = sys.argv[2]
epochs = int(sys.argv[3])
num_words = int(sys.argv[4])
batch_size = int(sys.argv[5])
pad_length = int(sys.argv[6])
@ex.config
def config():
build_number = build_number
data_path = data_path
epochs = epochs
num_words = num_words
batch_size = batch_size
pad_length = pad_length
@ex.capture
def tokenize(x, x_test, pad_length, num_words):
2022-05-03 00:04:19 +02:00
tokenizer = Tokenizer(num_words=num_words)
tokenizer.fit_on_texts(x)
test_x = tokenizer.texts_to_sequences(x_test)
vocabulary_length = len(tokenizer.word_index) + 1
test_x = pad_sequences(test_x, padding='post', maxlen=pad_length)
return test_x, vocabulary_length
2022-05-08 13:30:09 +02:00
@ex.capture
def evaluate_and_save(model, x, y, abs_path, build_number):
2022-05-03 00:04:19 +02:00
loss, accuracy = model.evaluate(x, y, verbose=False)
y_predicted = (model.predict(x) >= 0.5).astype(int)
2022-05-04 18:08:52 +02:00
evaluation_file_path = os.path.join(abs_path, 'neural_network_evaluation.csv')
with open(evaluation_file_path, 'a+') as f:
result = f'{build_number},{accuracy},{loss},{precision_score(y, y_predicted)},{recall_score(y, y_predicted)},{f1_score(y, y_predicted)}'
f.write(result + '\n')
2022-05-08 13:30:09 +02:00
ex.log_scalar("loss", loss)
ex.log_scalar("accuracy", accuracy)
ex.add_artifact(evaluation_file_path)
2022-05-04 18:08:52 +02:00
def generate_and_save_comparison(abs_path):
evaluation_file_path = os.path.join(abs_path, 'neural_network_evaluation.csv')
df = pd.read_csv(evaluation_file_path, sep=',', header=None,
names=['build_number', 'Accuracy', 'Loss', 'Precision', 'Recall', 'F1'])
2022-05-04 20:41:25 +02:00
df = df[df.build_number != 0]
2022-05-04 18:08:52 +02:00
fig = plt.figure(figsize=(16 * .6, 9 * .6))
ax = fig.add_subplot(111)
ax.set_title('Evaluation')
X = df['build_number']
ax.set_xlabel('build_number')
ax.set_xticks(df['build_number'])
for metrics, color in zip(['Accuracy', 'Loss', 'Precision', 'Recall', 'F1'],
['green', 'red', 'blue', 'brown', 'magenta']):
ax.plot(X, df[metrics], color=color, lw=1, label=f'{metrics}')
ax.legend()
plt.savefig(os.path.join(abs_path, 'evaluation.png'), format='png')
2022-05-08 13:30:09 +02:00
ex.add_artifact(os.path.join(abs_path, 'evaluation.png'))
2022-05-04 18:08:52 +02:00
return ax
def load_trained_model():
# glob_pattern = os.path.join(os.getcwd(), 'model', 'neural_net_*')
glob_pattern = os.path.join(os.getcwd(), 'model', 'neural_net')
models = glob.glob(glob_pattern)
models = [os.path.split(x)[1] for x in models]
# model_name = sorted(models, key=lambda x: datetime.datetime.strptime(x[11:], '%d-%b-%Y-%H:%M:%S'),
# reverse=True)[0]
return load_model(os.path.join(os.getcwd(), 'model', models[0]))
2022-05-03 00:04:19 +02:00
def split_data(data):
x = data['tokens']
y = data['fraudulent']
return x, y
def load_data(data_path, filename) -> pd.DataFrame:
return pd.read_csv(os.path.join(data_path, filename))
2022-05-08 13:30:09 +02:00
@ex.main
def main(build_number, data_path, num_words, epochs, batch_size, pad_length, _run):
2022-05-03 00:04:19 +02:00
abs_data_path = os.path.abspath(data_path)
train_data = load_data(abs_data_path, 'train_data.csv')
test_data = load_data(abs_data_path, 'test_data.csv')
x_train, _ = split_data(train_data)
x_test, y_test = split_data(test_data)
x_test, _ = tokenize(pd.concat([x_train, x_test]), x_test)
2022-05-04 18:08:52 +02:00
model = load_trained_model()
2022-05-03 00:04:19 +02:00
evaluate_and_save(model, x_test, y_test, abs_data_path)
2022-05-04 18:08:52 +02:00
generate_and_save_comparison(abs_data_path)
2022-05-03 00:04:19 +02:00
2022-05-08 13:30:09 +02:00
ex.run()