This commit is contained in:
parent
81ef5f8c7d
commit
0ab6df2703
@ -17,7 +17,6 @@ node {
|
||||
stage('Copy artifacts') {
|
||||
copyArtifacts filter: 'train_data.csv', fingerprintArtifacts: true, projectName: 's444452-create-dataset'
|
||||
copyArtifacts filter: 'test_data.csv', fingerprintArtifacts: true, projectName: 's444452-create-dataset'
|
||||
copyArtifacts filter: 'dev_data.csv', fingerprintArtifacts: true, projectName: 's444452-create-dataset'
|
||||
}
|
||||
stage('Run script') {
|
||||
withEnv(["TRAIN_PARAMS=${params.TRAIN_PARAMS}"]) {
|
||||
@ -25,7 +24,7 @@ node {
|
||||
}
|
||||
}
|
||||
stage('Archive artifacts') {
|
||||
archiveArtifacts "neural_network_evaluation.txt, model/**"
|
||||
archiveArtifacts "model/**"
|
||||
}
|
||||
}
|
||||
} catch (e) {
|
||||
|
@ -1,14 +1,12 @@
|
||||
#!/usr/bin/python
|
||||
import datetime
|
||||
import os
|
||||
import pprint
|
||||
import sys
|
||||
import pandas as pd
|
||||
from keras.models import Sequential, load_model
|
||||
from keras.models import Sequential
|
||||
from keras import layers
|
||||
from keras.preprocessing.text import Tokenizer
|
||||
from keras.preprocessing.sequence import pad_sequences
|
||||
from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score
|
||||
import logging
|
||||
|
||||
logging.getLogger("tensorflow").setLevel(logging.ERROR)
|
||||
@ -20,32 +18,14 @@ batch_size = 0
|
||||
pad_length = 0
|
||||
|
||||
|
||||
def tokenize(x, x_train, x_test):
|
||||
def tokenize(x, x_train):
|
||||
global pad_length, num_words
|
||||
tokenizer = Tokenizer(num_words=num_words)
|
||||
tokenizer.fit_on_texts(x)
|
||||
train_x = tokenizer.texts_to_sequences(x_train)
|
||||
test_x = tokenizer.texts_to_sequences(x_test)
|
||||
vocabulary_length = len(tokenizer.word_index) + 1
|
||||
|
||||
train_x = pad_sequences(train_x, padding='post', maxlen=pad_length)
|
||||
test_x = pad_sequences(test_x, padding='post', maxlen=pad_length)
|
||||
return train_x, test_x, vocabulary_length
|
||||
|
||||
|
||||
def evaluate_and_save(model, x, y, abs_path):
|
||||
loss, accuracy = model.evaluate(x, y, verbose=False)
|
||||
y_predicted = (model.predict(x) >= 0.5).astype(int)
|
||||
with open(os.path.join(abs_path, 'neural_network_evaluation.txt'), "w") as log_file:
|
||||
for obj in (
|
||||
('Accuracy: ', accuracy), ('Loss: ', loss), ('Precision: ', precision_score(y, y_predicted)),
|
||||
('Recall: ', recall_score(y, y_predicted)), ('F1: ', f1_score(y, y_predicted)),
|
||||
('Accuracy: ', accuracy_score(y, y_predicted))):
|
||||
pprint.pprint(obj, log_file)
|
||||
|
||||
|
||||
def load_trained_model(abs_path, model_name):
|
||||
return load_model(os.path.join(abs_path, model_name))
|
||||
return train_x, vocabulary_length
|
||||
|
||||
|
||||
def save_model(model):
|
||||
@ -99,12 +79,11 @@ def main():
|
||||
train_data = load_data(abs_data_path, 'train_data.csv')
|
||||
test_data = load_data(abs_data_path, 'test_data.csv')
|
||||
x_train, y_train = split_data(train_data)
|
||||
x_test, y_test = split_data(test_data)
|
||||
x_train, x_test, vocab_size = tokenize(pd.concat([x_train, x_test]), x_train, x_test)
|
||||
x_test, _ = split_data(test_data)
|
||||
x_train, vocab_size = tokenize(pd.concat([x_train, x_test]), x_train)
|
||||
model = get_model(vocab_size)
|
||||
train_model(model, x_train, y_train)
|
||||
save_model(model)
|
||||
evaluate_and_save(model, x_test, y_test, abs_data_path)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
Loading…
Reference in New Issue
Block a user