sacred
This commit is contained in:
parent
cd1eb59b3f
commit
9150fda147
@ -7,21 +7,35 @@ from keras.models import load_model
|
||||
from keras.preprocessing.text import Tokenizer
|
||||
from keras.preprocessing.sequence import pad_sequences
|
||||
from sklearn.metrics import precision_score, recall_score, f1_score
|
||||
import logging
|
||||
import matplotlib.pyplot as plt
|
||||
from sacred.observers import MongoObserver
|
||||
from sacred.observers import FileStorageObserver
|
||||
from sacred import Experiment
|
||||
|
||||
logging.getLogger("tensorflow").setLevel(logging.ERROR)
|
||||
ex = Experiment(name='fake_job_classification_evaluation')
|
||||
# ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@localhost:27017'))
|
||||
ex.observers.append(FileStorageObserver('my_runs'))
|
||||
|
||||
build_number = ''
|
||||
data_path = ''
|
||||
num_words = 0
|
||||
epochs = 0
|
||||
batch_size = 0
|
||||
pad_length = 0
|
||||
build_number = sys.argv[1]
|
||||
data_path = sys.argv[2]
|
||||
epochs = int(sys.argv[3])
|
||||
num_words = int(sys.argv[4])
|
||||
batch_size = int(sys.argv[5])
|
||||
pad_length = int(sys.argv[6])
|
||||
|
||||
|
||||
def tokenize(x, x_test):
|
||||
global pad_length, num_words
|
||||
@ex.config
|
||||
def config():
|
||||
build_number = build_number
|
||||
data_path = data_path
|
||||
epochs = epochs
|
||||
num_words = num_words
|
||||
batch_size = batch_size
|
||||
pad_length = pad_length
|
||||
|
||||
|
||||
@ex.capture
|
||||
def tokenize(x, x_test, pad_length, num_words):
|
||||
tokenizer = Tokenizer(num_words=num_words)
|
||||
tokenizer.fit_on_texts(x)
|
||||
test_x = tokenizer.texts_to_sequences(x_test)
|
||||
@ -30,14 +44,17 @@ def tokenize(x, x_test):
|
||||
return test_x, vocabulary_length
|
||||
|
||||
|
||||
def evaluate_and_save(model, x, y, abs_path):
|
||||
global build_number
|
||||
@ex.capture
|
||||
def evaluate_and_save(model, x, y, abs_path, build_number):
|
||||
loss, accuracy = model.evaluate(x, y, verbose=False)
|
||||
y_predicted = (model.predict(x) >= 0.5).astype(int)
|
||||
evaluation_file_path = os.path.join(abs_path, 'neural_network_evaluation.csv')
|
||||
with open(evaluation_file_path, 'a+') as f:
|
||||
result = f'{build_number},{accuracy},{loss},{precision_score(y, y_predicted)},{recall_score(y, y_predicted)},{f1_score(y, y_predicted)}'
|
||||
f.write(result + '\n')
|
||||
ex.log_scalar("loss", loss)
|
||||
ex.log_scalar("accuracy", accuracy)
|
||||
ex.add_artifact(evaluation_file_path)
|
||||
|
||||
|
||||
def generate_and_save_comparison(abs_path):
|
||||
@ -56,6 +73,7 @@ def generate_and_save_comparison(abs_path):
|
||||
ax.plot(X, df[metrics], color=color, lw=1, label=f'{metrics}')
|
||||
ax.legend()
|
||||
plt.savefig(os.path.join(abs_path, 'evaluation.png'), format='png')
|
||||
ex.add_artifact(os.path.join(abs_path, 'evaluation.png'))
|
||||
return ax
|
||||
|
||||
|
||||
@ -79,19 +97,8 @@ def load_data(data_path, filename) -> pd.DataFrame:
|
||||
return pd.read_csv(os.path.join(data_path, filename))
|
||||
|
||||
|
||||
def read_params():
|
||||
global build_number, data_path, num_words, epochs, batch_size, pad_length
|
||||
build_number = sys.argv[1]
|
||||
data_path, num_words, epochs, batch_size, pad_length = sys.argv[2].split(',')
|
||||
num_words = int(num_words)
|
||||
epochs = int(epochs)
|
||||
batch_size = int(batch_size)
|
||||
pad_length = int(pad_length)
|
||||
|
||||
|
||||
def main():
|
||||
read_params()
|
||||
global data_path
|
||||
@ex.main
|
||||
def main(build_number, data_path, num_words, epochs, batch_size, pad_length, _run):
|
||||
abs_data_path = os.path.abspath(data_path)
|
||||
train_data = load_data(abs_data_path, 'train_data.csv')
|
||||
test_data = load_data(abs_data_path, 'test_data.csv')
|
||||
@ -103,5 +110,4 @@ def main():
|
||||
generate_and_save_comparison(abs_data_path)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
ex.run()
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/python
|
||||
import datetime
|
||||
import os
|
||||
import sys
|
||||
import pandas as pd
|
||||
@ -7,19 +6,32 @@ from keras.models import Sequential
|
||||
from keras import layers
|
||||
from keras.preprocessing.text import Tokenizer
|
||||
from keras.preprocessing.sequence import pad_sequences
|
||||
import logging
|
||||
from sacred.observers import MongoObserver
|
||||
from sacred.observers import FileStorageObserver
|
||||
from sacred import Experiment
|
||||
|
||||
logging.getLogger("tensorflow").setLevel(logging.ERROR)
|
||||
ex = Experiment(name='fake_job_classification_training')
|
||||
# ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@localhost:27017'))
|
||||
ex.observers.append(FileStorageObserver('my_runs'))
|
||||
|
||||
data_path = ''
|
||||
num_words = 0
|
||||
epochs = 0
|
||||
batch_size = 0
|
||||
pad_length = 0
|
||||
data_path = sys.argv[1]
|
||||
epochs = int(sys.argv[2])
|
||||
num_words = int(sys.argv[3])
|
||||
batch_size = int(sys.argv[4])
|
||||
pad_length = int(sys.argv[5])
|
||||
|
||||
|
||||
def tokenize(x, x_train):
|
||||
global pad_length, num_words
|
||||
@ex.config
|
||||
def config():
|
||||
data_path = data_path
|
||||
epochs = epochs
|
||||
num_words = num_words
|
||||
batch_size = batch_size
|
||||
pad_length = pad_length
|
||||
|
||||
|
||||
@ex.capture
|
||||
def tokenize(x, x_train, pad_length, num_words):
|
||||
tokenizer = Tokenizer(num_words=num_words)
|
||||
tokenizer.fit_on_texts(x)
|
||||
train_x = tokenizer.texts_to_sequences(x_train)
|
||||
@ -32,15 +44,16 @@ def save_model(model):
|
||||
# model_name = 'neural_net_' + datetime.datetime.today().strftime('%d-%b-%Y-%H:%M:%S')
|
||||
model_name = 'neural_net'
|
||||
model.save(os.path.join(os.getcwd(), 'model', model_name), save_format='h5', overwrite=True)
|
||||
ex.add_artifact(os.path.join(os.getcwd(), 'model', model_name))
|
||||
|
||||
|
||||
def train_model(model, x_train, y_train):
|
||||
global epochs, batch_size
|
||||
@ex.capture
|
||||
def train_model(model, x_train, y_train, epochs, batch_size):
|
||||
model.fit(x_train, y_train, epochs=epochs, verbose=False, batch_size=batch_size)
|
||||
|
||||
|
||||
def get_model(vocabulary_length):
|
||||
global pad_length, batch_size
|
||||
@ex.capture
|
||||
def get_model(vocabulary_length, batch_size, pad_length):
|
||||
model = Sequential()
|
||||
model.add(layers.Embedding(input_dim=vocabulary_length,
|
||||
output_dim=batch_size,
|
||||
@ -64,18 +77,8 @@ def load_data(data_path, filename) -> pd.DataFrame:
|
||||
return pd.read_csv(os.path.join(data_path, filename))
|
||||
|
||||
|
||||
def read_params():
|
||||
global data_path, num_words, epochs, batch_size, pad_length
|
||||
data_path, num_words, epochs, batch_size, pad_length = sys.argv[1].split(',')
|
||||
num_words = int(num_words)
|
||||
epochs = int(epochs)
|
||||
batch_size = int(batch_size)
|
||||
pad_length = int(pad_length)
|
||||
|
||||
|
||||
def main():
|
||||
read_params()
|
||||
global data_path
|
||||
@ex.main
|
||||
def main(data_path, num_words, epochs, batch_size, pad_length, _run):
|
||||
abs_data_path = os.path.abspath(data_path)
|
||||
train_data = load_data(abs_data_path, 'train_data.csv')
|
||||
test_data = load_data(abs_data_path, 'test_data.csv')
|
||||
@ -87,5 +90,4 @@ def main():
|
||||
save_model(model)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
ex.run()
|
||||
|
Loading…
Reference in New Issue
Block a user