node { docker.image('s444452/ium:1.2').inside { stage('Preparation') { properties([ parameters([ string( defaultValue: 'adamosiowy', description: 'Kaggle username', name: 'KAGGLE_USERNAME', trim: false ), password( defaultValue: '', description: 'Kaggle token taken from kaggle.json file, as described in https://github.com/Kaggle/kaggle-api#api-credentials', name: 'KAGGLE_KEY' ), string( defaultValue: "10000", description: 'Determine the size of dataset', name: 'CUTOFF' ) ]) ]) } stage('Clone repository') { checkout([$class: 'GitSCM', branches: [[name: '*/master']], extensions: [], userRemoteConfigs: [[credentialsId: '5e0a58a0-03ad-41dd-beff-7b8a07c7fe0c', url: 'https://git.wmi.amu.edu.pl/s444452/ium_444452.git']]]) } stage('Run script') { withEnv(["KAGGLE_USERNAME=${params.KAGGLE_USERNAME}", "KAGGLE_KEY=${params.KAGGLE_KEY}","CUTOFF=${params.CUTOFF}"]) { sh "rm real-or-fake-fake-jobposting-prediction.zip" sh "ls" sh "python3 download_dataset.py '.' 'dataset.csv'" } } stage('Archive artifacts') { archiveArtifacts 'dataset.csv' 'train_data.csv' 'test_data.csv' 'dev_data.csv' } } }