#!/usr/bin/python import os import sys import pandas as pd from keras.models import Sequential from keras import layers from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from sacred.observers import MongoObserver from sacred.observers import FileStorageObserver from sacred import Experiment ex = Experiment(name='fake_job_classification_training') # ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@localhost:27017')) ex.observers.append(FileStorageObserver('my_runs')) data_path = sys.argv[1] epochs = int(sys.argv[2]) num_words = int(sys.argv[3]) batch_size = int(sys.argv[4]) pad_length = int(sys.argv[5]) @ex.config def config(): data_path = data_path epochs = epochs num_words = num_words batch_size = batch_size pad_length = pad_length @ex.capture def tokenize(x, x_train, pad_length, num_words): tokenizer = Tokenizer(num_words=num_words) tokenizer.fit_on_texts(x) train_x = tokenizer.texts_to_sequences(x_train) vocabulary_length = len(tokenizer.word_index) + 1 train_x = pad_sequences(train_x, padding='post', maxlen=pad_length) return train_x, vocabulary_length def save_model(model): # model_name = 'neural_net_' + datetime.datetime.today().strftime('%d-%b-%Y-%H:%M:%S') model_name = 'neural_net' model.save(os.path.join(os.getcwd(), 'model', model_name), save_format='h5', overwrite=True) ex.add_artifact(os.path.join(os.getcwd(), 'model', model_name)) @ex.capture def train_model(model, x_train, y_train, epochs, batch_size): model.fit(x_train, y_train, epochs=epochs, verbose=False, batch_size=batch_size) @ex.capture def get_model(vocabulary_length, batch_size, pad_length): model = Sequential() model.add(layers.Embedding(input_dim=vocabulary_length, output_dim=batch_size, input_length=pad_length)) model.add(layers.Flatten()) model.add(layers.Dense(10, activation='relu')) model.add(layers.Dense(1, activation='sigmoid')) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) return model def split_data(data): x = data['tokens'] y = data['fraudulent'] return x, y def load_data(data_path, filename) -> pd.DataFrame: return pd.read_csv(os.path.join(data_path, filename)) @ex.main def main(data_path, num_words, epochs, batch_size, pad_length, _run): abs_data_path = os.path.abspath(data_path) train_data = load_data(abs_data_path, 'train_data.csv') test_data = load_data(abs_data_path, 'test_data.csv') x_train, y_train = split_data(train_data) x_test, _ = split_data(test_data) x_train, vocab_size = tokenize(pd.concat([x_train, x_test]), x_train) model = get_model(vocab_size) train_model(model, x_train, y_train) save_model(model) ex.run()