99 lines
3.8 KiB
Plaintext
99 lines
3.8 KiB
Plaintext
node {
|
|
checkout scm
|
|
try {
|
|
docker.image('s444452/ium:1.3').inside {
|
|
stage('Preparation') {
|
|
properties([
|
|
parameters([
|
|
gitParameter(
|
|
branchFilter: 'origin/(.*)',
|
|
defaultValue: 'master',
|
|
description: 'Select branch',
|
|
name: 'BRANCH',
|
|
type: 'PT_BRANCH'
|
|
),
|
|
buildSelector(
|
|
defaultSelector: upstream(),
|
|
description: 'Which build to use for copying artifacts',
|
|
name: 'BUILD_SELECTOR'
|
|
),
|
|
string(
|
|
defaultValue: "0",
|
|
description: 'Build number',
|
|
name: 'BUILD_NR'
|
|
),
|
|
string(
|
|
defaultValue: ".",
|
|
description: 'Data path',
|
|
name: 'DATA_PATH'
|
|
),
|
|
string(
|
|
defaultValue: "1",
|
|
description: 'EPOCHS',
|
|
name: 'EPOCHS'
|
|
),
|
|
string(
|
|
defaultValue: "20000",
|
|
description: 'Num words',
|
|
name: 'NUM_WORDS'
|
|
),
|
|
string(
|
|
defaultValue: "1000",
|
|
description: 'Batch size',
|
|
name: 'BATCH_SIZE'
|
|
),
|
|
string(
|
|
defaultValue: "2000",
|
|
description: 'Pad length',
|
|
name: 'PAD_LENGTH'
|
|
)
|
|
])
|
|
])
|
|
}
|
|
stage('Copy artifacts') {
|
|
copyArtifacts filter: 'train_data.csv', fingerprintArtifacts: true, projectName: 's444452-create-dataset'
|
|
copyArtifacts filter: 'test_data.csv', fingerprintArtifacts: true, projectName: 's444452-create-dataset'
|
|
copyArtifacts filter: 'neural_network_evaluation.csv', projectName: "s444452-evaluation/${params.BRANCH}", optional: true
|
|
copyArtifacts filter: 'model/neural_net', projectName: "s444452-training/${params.BRANCH}", selector: buildParameter('BUILD_SELECTOR')
|
|
}
|
|
stage('Run script') {
|
|
withEnv(["BUILD_NR=${params.BUILD_NR}","DATA_PATH=${params.DATA_PATH}","EPOCHS=${params.EPOCHS}",
|
|
"NUM_WORDS=${params.NUM_WORDS}", "BATCH_SIZE=${params.BATCH_SIZE}","PAD_LENGTH=${params.PAD_LENGTH}"]) {
|
|
sh "python3 Scripts/evaluate_neural_network.py $BUILD_NR $DATA_PATH $EPOCHS $NUM_WORDS $BATCH_SIZE $PAD_LENGTH"
|
|
}
|
|
}
|
|
stage('Archive artifacts') {
|
|
archiveArtifacts "neural_network_evaluation.csv, evaluation.png"
|
|
archiveArtifacts "my_runs/**"
|
|
}
|
|
}
|
|
} catch (e) {
|
|
currentBuild.result = "FAILED"
|
|
throw e
|
|
} finally {
|
|
notifyBuild(currentBuild.result)
|
|
}
|
|
}
|
|
def notifyBuild(String buildStatus = 'STARTED') {
|
|
buildStatus = buildStatus ?: 'SUCCESS'
|
|
|
|
def subject = "Job: ${env.JOB_NAME}"
|
|
def lastline = ""
|
|
try {
|
|
def filePath = readFile "${WORKSPACE}/neural_network_evaluation.csv"
|
|
def lines = filePath.readLines()
|
|
lastline = lines.get(lines.size()-1)
|
|
}
|
|
catch (e) {
|
|
println(e.toString())
|
|
}
|
|
|
|
def build_params = "Path: ${params.DATA_PATH}, Epochs: ${params.EPOCHS}, Num_words: ${params.NUM_WORDS}, Batch_size: ${params.BATCH_SIZE}, Pad_length: ${params.PAD_LENGTH}"
|
|
def details = "Build nr: ${env.BUILD_NUMBER}, status: ${buildStatus} \n url: ${env.BUILD_URL} \n build params: ${build_params} \n metrics: ${lastline}"
|
|
|
|
emailext (
|
|
subject: subject,
|
|
body: details,
|
|
to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms'
|
|
)
|
|
} |