ium_444452/Jenkinsfile.create_dataset

39 lines
1.6 KiB
Plaintext

node {
docker.image('s444452/ium:1.2').inside {
stage('Preparation') {
properties([
parameters([
string(
defaultValue: 'adamosiowy',
description: 'Kaggle username',
name: 'KAGGLE_USERNAME',
trim: false
),
password(
defaultValue: '',
description: 'Kaggle token taken from kaggle.json file, as described in https://github.com/Kaggle/kaggle-api#api-credentials',
name: 'KAGGLE_KEY'
),
string(
defaultValue: "10000",
description: 'Determine the size of dataset',
name: 'CUTOFF'
)
])
])
}
stage('Clone repository') {
checkout([$class: 'GitSCM', branches: [[name: '*/master']], extensions: [], userRemoteConfigs: [[credentialsId: '5e0a58a0-03ad-41dd-beff-7b8a07c7fe0c', url: 'https://git.wmi.amu.edu.pl/s444452/ium_444452.git']]])
}
stage('Run script') {
withEnv(["KAGGLE_USERNAME=${params.KAGGLE_USERNAME}",
"KAGGLE_KEY=${params.KAGGLE_KEY}","CUTOFF=${params.CUTOFF}"]) {
sh "python3 download_dataset.py '.' 'dataset.csv'"
sh "python3 train_neural_network.py '.'"
}
}
stage('Archive artifacts') {
archiveArtifacts "dataset.csv, train_data.csv, test_data.csv, dev_data.csv, neural_network_evaluation.txt"
}
}
}