Merge branch 'master' of https://git.wmi.amu.edu.pl/s444452/mpsic_projekt_1_bayes_classifier
d
This commit is contained in:
commit
575da00f8a
17881
data/dataset.csv
17881
data/dataset.csv
File diff suppressed because one or more lines are too long
222
naive_bayes.py
222
naive_bayes.py
@ -1,193 +1,67 @@
|
||||
import os
|
||||
import sys
|
||||
from collections import Counter
|
||||
|
||||
import nltk
|
||||
|
||||
nltk.download('punkt')
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from kaggle import api
|
||||
from sklearn.metrics import accuracy_score
|
||||
from sklearn.model_selection import train_test_split
|
||||
from nltk.tokenize import RegexpTokenizer, word_tokenize, sent_tokenize
|
||||
import os
|
||||
from collections import Counter
|
||||
from ast import literal_eval
|
||||
|
||||
from nltk.corpus import stopwords # To Remove the stop words
|
||||
# TODO: stworzyc mapy slow dla zbiorów z fraudulent 0 i 1
|
||||
|
||||
from nltk.stem import PorterStemmer, WordNetLemmatizer
|
||||
from sklearn.feature_extraction.text import CountVectorizer
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
|
||||
from wordcloud import WordCloud, STOPWORDS
|
||||
|
||||
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
|
||||
from string import punctuation
|
||||
from nltk import pos_tag
|
||||
from nltk.corpus import wordnet
|
||||
|
||||
ps = PorterStemmer() # To perform stemming
|
||||
|
||||
|
||||
def download_data(data_path, dataset_name):
|
||||
if not os.path.exists(os.path.join(data_path, dataset_name)):
|
||||
api.authenticate()
|
||||
api.dataset_download_files('shivamb/real-or-fake-fake-jobposting-prediction', path=data_path,
|
||||
unzip=True)
|
||||
os.rename(os.path.join(data_path, 'fake_job_postings.csv'), os.path.join(data_path, dataset_name))
|
||||
|
||||
|
||||
def save_dataset(data_path, data, name):
|
||||
data.to_csv(os.path.join(data_path, name), index=False)
|
||||
|
||||
|
||||
def preprocess_dataset(data):
|
||||
data = data.replace(np.nan, '', regex=True)
|
||||
|
||||
data['description'] = data['description'].str.replace(r"\W+", " ", regex=True)
|
||||
data['description'] = data['description'].str.replace(r"url_\w+", " ", regex=True)
|
||||
data['description'] = data['description'].str.replace(r"\s+", " ", regex=True)
|
||||
|
||||
data['text'] = data[['title', 'department', 'company_profile', 'description', 'requirements', 'benefits']].apply(
|
||||
lambda x: ' '.join(x), axis=1)
|
||||
data['text'] = data['text'].str.lower()
|
||||
|
||||
tokenizer = RegexpTokenizer(r'\w+')
|
||||
data['tokens'] = data['text'].apply(tokenizer.tokenize)
|
||||
# data['tokens'] = data['text'].apply(lambda x: word_tokenize(x))
|
||||
|
||||
return data.drop(['job_id', 'department', 'company_profile', 'description', 'requirements', 'benefits', 'text'],
|
||||
axis=1)
|
||||
|
||||
|
||||
def to_dictionary(stop_words, category):
|
||||
vocab = set()
|
||||
sentences = category
|
||||
for i in sentences:
|
||||
for word in i:
|
||||
word_lower = word.lower()
|
||||
if word_lower not in stop_words and word_lower.isalpha():
|
||||
vocab.add(ps.stem(word_lower))
|
||||
word_dic = Counter(vocab)
|
||||
return word_dic
|
||||
|
||||
|
||||
# For tokenizing the words and putting it into the word list
|
||||
def return_word_list(stop_words, sentence):
|
||||
word_list = []
|
||||
for word in sentence:
|
||||
word_lower = word.lower()
|
||||
if word_lower not in stop_words and word_lower.isalpha():
|
||||
word_list.append(ps.stem(word_lower))
|
||||
return word_list
|
||||
|
||||
|
||||
# For finding the conditional probability
|
||||
def return_category_probability_dictionary(dict_category_wise_probability, word_list, probab, prob_df, pro):
|
||||
help_dict = {}
|
||||
for i, row in probab.iterrows():
|
||||
for word in word_list:
|
||||
if (word in prob_df.index.tolist()):
|
||||
pro = pro * probab.loc[i, word]
|
||||
help_dict[i] = pro * dict_category_wise_probability[i]
|
||||
pro = 1
|
||||
return help_dict
|
||||
from prepare_data import read_data
|
||||
|
||||
|
||||
class NaiveBayes:
|
||||
def __init__(self, data, labels, features):
|
||||
self.data = data
|
||||
def __init__(self, train_x, train_y, labels):
|
||||
self.train_x = train_x
|
||||
self.train_y = train_y
|
||||
self.labels = labels
|
||||
self.features = features
|
||||
self.counts = {}
|
||||
self.prior_prob = {}
|
||||
self.word_counts = {}
|
||||
|
||||
def count_words(self):
|
||||
for label in self.labels:
|
||||
indexes = self.train_y.index[self.train_y == label].tolist()
|
||||
data = self.train_x[self.train_x.index.isin(indexes)]
|
||||
vocabulary = []
|
||||
for tokens in data:
|
||||
vocabulary += tokens
|
||||
self.word_counts.update({label: (len(vocabulary), len(set(vocabulary)), Counter(vocabulary))})
|
||||
|
||||
def fit(self):
|
||||
pass
|
||||
self.counts = {l: self.train_y[self.train_y == l].shape[0] for l in self.labels}
|
||||
self.prior_prob = {l: float(self.counts[l]) / float(self.train_y.shape[0]) for l in self.labels}
|
||||
self.count_words()
|
||||
|
||||
def transform(self):
|
||||
pass
|
||||
def get_posteriori(self, text):
|
||||
values = {}
|
||||
for label in self.labels:
|
||||
values = {label: 0 for label in self.labels}
|
||||
for word in text:
|
||||
values[label] += np.log((float(self.word_counts[label][2].get(word, 0) + 1)) / (
|
||||
self.word_counts[label][0] + self.word_counts[label][1]))
|
||||
values[label] *= np.log(self.prior_prob[label])
|
||||
return values.values()
|
||||
|
||||
def predict(self):
|
||||
pass
|
||||
|
||||
def evaluate(self, test_data):
|
||||
pass
|
||||
def predict(self, test_x):
|
||||
predicted = []
|
||||
for row in test_x:
|
||||
predicted.append(np.argmax(self.get_posteriori(row)))
|
||||
return predicted
|
||||
|
||||
|
||||
def main():
|
||||
abs_data_path, dataset_name = os.path.abspath('./data'), 'dataset.csv'
|
||||
download_data(abs_data_path, dataset_name)
|
||||
data = pd.read_csv(os.path.join(abs_data_path, dataset_name))
|
||||
clean_data = preprocess_dataset(data)
|
||||
x, y = clean_data['tokens'], clean_data['fraudulent']
|
||||
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2,
|
||||
random_state=123, stratify=y)
|
||||
train_data = pd.concat([x_train, y_train], axis=1)
|
||||
print(train_data)
|
||||
test_data = pd.concat([x_test, y_test], axis=1)
|
||||
data = read_data(os.path.join(os.path.abspath("./data"), "clean-data.csv"))
|
||||
data['tokens'] = data['tokens'].apply(literal_eval)
|
||||
x = data['tokens']
|
||||
y = data['fraudulent']
|
||||
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=123, stratify=y)
|
||||
bayes = NaiveBayes(x_train, y_train, [0, 1])
|
||||
bayes.fit()
|
||||
predicted = bayes.predict(x_test)
|
||||
|
||||
classes = [0, 1]
|
||||
# Building the master dictionary that contains the word frequency
|
||||
master_dict = {}
|
||||
stop_words = set(stopwords.words('english'))
|
||||
|
||||
for category in classes:
|
||||
category_temp = train_data[train_data['fraudulent'] == category]
|
||||
temp_dict = to_dictionary(stop_words, category_temp['tokens'])
|
||||
master_dict[category] = temp_dict
|
||||
|
||||
# Converting the dictionary to data frame for ease of use
|
||||
word_frequency_df = pd.DataFrame(master_dict).fillna(0)
|
||||
print(word_frequency_df)
|
||||
|
||||
# Building the dictionary that holds category wise sums and word wise probabilities
|
||||
categories_to_iterate = list(word_frequency_df) # Prepared category for zip
|
||||
category_sum = []
|
||||
for category in categories_to_iterate:
|
||||
category_sum.append(word_frequency_df[category].sum()) # Prepared category sum for zip
|
||||
dict_category_sum = dict(zip(categories_to_iterate, category_sum)) # Dictionary with category based sums
|
||||
print(f"The dictionary that holds the cateogry wise sum is {dict_category_sum}")
|
||||
|
||||
dict_category_wise_probability = dict_category_sum.copy()
|
||||
|
||||
total_sentences_values = dict_category_wise_probability.values()
|
||||
total = sum(total_sentences_values)
|
||||
|
||||
for key, value in dict_category_wise_probability.items():
|
||||
dict_category_wise_probability[key] = value / total
|
||||
print(f"The dictionay that holds the category wise probabilities is {dict_category_wise_probability}")
|
||||
|
||||
# Building word probability with the application of smoothing
|
||||
prob_df = word_frequency_df
|
||||
for category in categories_to_iterate:
|
||||
for index, row in prob_df.iterrows():
|
||||
row[category] = ((row[category] + 1) / (dict_category_sum[category] + len(prob_df[category]))) # Smoothing
|
||||
prob_df.at[index, category] = row[category]
|
||||
print(prob_df)
|
||||
|
||||
probab = prob_df.transpose()
|
||||
pro = 1
|
||||
|
||||
match = 0
|
||||
total = 0
|
||||
counter = 0
|
||||
for _, row in test_data.iterrows():
|
||||
if counter > 200:
|
||||
break
|
||||
ind = row['fraudulent']
|
||||
text = row['tokens']
|
||||
word_list = return_word_list(stop_words, text)
|
||||
|
||||
# Get the dictionary that contains the final probability P(word|category)
|
||||
help_dict = return_category_probability_dictionary(dict_category_wise_probability, word_list, probab, prob_df,
|
||||
pro)
|
||||
|
||||
if ind == max(help_dict, key=help_dict.get):
|
||||
match = match + 1
|
||||
total = total + 1
|
||||
counter += 1
|
||||
|
||||
print(f"The model predicted {match} correctly of {total}")
|
||||
print(f"The model accuracy then is {int((match / total) * 100)}%")
|
||||
print(accuracy_score(y_test, predicted))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
103
prepare_data.py
Normal file
103
prepare_data.py
Normal file
@ -0,0 +1,103 @@
|
||||
import os
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
from kaggle import api
|
||||
from sklearn.utils import shuffle
|
||||
|
||||
import nltk
|
||||
from nltk.tokenize import RegexpTokenizer
|
||||
from nltk.stem.snowball import SnowballStemmer
|
||||
from nltk.corpus import stopwords
|
||||
|
||||
nltk.download("punkt")
|
||||
nltk.download("stopwords")
|
||||
|
||||
stemmer = SnowballStemmer(language="english")
|
||||
tokenizer = RegexpTokenizer(r'\w+')
|
||||
stop_words = set(stopwords.words('english'))
|
||||
|
||||
|
||||
def read_data(data_path: str, prepare_data: bool = False):
|
||||
"""Read data from given path - if @prepared_data is True, data is also preprocessed and cleaned"""
|
||||
if prepare_data:
|
||||
data = preprocess_dataset(data_path)
|
||||
else:
|
||||
data = pd.read_csv(data_path)
|
||||
return data
|
||||
|
||||
|
||||
def download_data(data_path, dataset_name):
|
||||
if not os.path.exists(os.path.join(data_path, dataset_name)):
|
||||
api.authenticate()
|
||||
api.dataset_download_files(
|
||||
"shivamb/real-or-fake-fake-jobposting-prediction",
|
||||
path=data_path,
|
||||
unzip=True,
|
||||
)
|
||||
os.rename(
|
||||
os.path.join(data_path, "fake_job_postings.csv"),
|
||||
os.path.join(data_path, dataset_name),
|
||||
)
|
||||
|
||||
|
||||
def tokenize_and_stem_text(text):
|
||||
tokenized_text = tokenizer.tokenize(text)
|
||||
tokens = [token.lower() for token in tokenized_text if token.lower() not in stop_words and len(token) > 3]
|
||||
return [stemmer.stem(token) for token in tokens]
|
||||
|
||||
|
||||
def preprocess_dataset(data_path):
|
||||
data = pd.read_csv(data_path).replace(np.nan, "", regex=True)
|
||||
|
||||
data_not_fraudulent = data[data['fraudulent'] == 0]
|
||||
data_fraudulent = data[data['fraudulent'] == 1]
|
||||
|
||||
sample = data_not_fraudulent.sample(data_fraudulent.shape[0], replace=False)
|
||||
data = pd.concat([sample.reset_index(), data_fraudulent.reset_index()], axis=0)
|
||||
data = shuffle(data)
|
||||
data["description"] = data["description"].str.replace(r"\W+", " ", regex=True)
|
||||
data["description"] = data["description"].str.replace(r"url_\w+", " ", regex=True)
|
||||
data["description"] = data["description"].str.replace(r"\s+", " ", regex=True)
|
||||
|
||||
data["text"] = data[[
|
||||
"title",
|
||||
"department",
|
||||
"company_profile",
|
||||
"description",
|
||||
"requirements",
|
||||
"benefits",
|
||||
]].apply(lambda x: " ".join(x), axis=1)
|
||||
# data["text"] = data[[
|
||||
# "description"
|
||||
# ]].apply(lambda x: " ".join(x), axis=1)
|
||||
|
||||
data["tokens"] = data["text"].apply(lambda text: tokenize_and_stem_text(text))
|
||||
|
||||
return data.drop(
|
||||
[
|
||||
"job_id",
|
||||
"department",
|
||||
"company_profile",
|
||||
"description",
|
||||
"requirements",
|
||||
"benefits",
|
||||
"text",
|
||||
],
|
||||
axis=1,
|
||||
)
|
||||
|
||||
|
||||
def save_dataset(data, data_path, name):
|
||||
data.to_csv(os.path.join(data_path, name), index=False)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# * Download the training data
|
||||
abs_data_path, dataset_name = os.path.abspath("./data"), "dataset.csv"
|
||||
download_data(abs_data_path, dataset_name)
|
||||
# * Data preprocessing
|
||||
data_path = os.path.join(abs_data_path, dataset_name)
|
||||
cleaned_data = preprocess_dataset(data_path)
|
||||
# * Save prepared data to a csv file
|
||||
save_dataset(cleaned_data, abs_data_path, "clean-data.csv")
|
Loading…
Reference in New Issue
Block a user