194 lines
6.7 KiB
Python
194 lines
6.7 KiB
Python
import os
|
|
import sys
|
|
from collections import Counter
|
|
|
|
import nltk
|
|
|
|
nltk.download('punkt')
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import pandas as pd
|
|
from kaggle import api
|
|
from sklearn.model_selection import train_test_split
|
|
from nltk.tokenize import RegexpTokenizer, word_tokenize, sent_tokenize
|
|
|
|
from nltk.corpus import stopwords # To Remove the stop words
|
|
|
|
from nltk.stem import PorterStemmer, WordNetLemmatizer
|
|
from sklearn.feature_extraction.text import CountVectorizer
|
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
|
|
from wordcloud import WordCloud, STOPWORDS
|
|
|
|
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
|
|
from string import punctuation
|
|
from nltk import pos_tag
|
|
from nltk.corpus import wordnet
|
|
|
|
ps = PorterStemmer() # To perform stemming
|
|
|
|
|
|
def download_data(data_path, dataset_name):
|
|
if not os.path.exists(os.path.join(data_path, dataset_name)):
|
|
api.authenticate()
|
|
api.dataset_download_files('shivamb/real-or-fake-fake-jobposting-prediction', path=data_path,
|
|
unzip=True)
|
|
os.rename(os.path.join(data_path, 'fake_job_postings.csv'), os.path.join(data_path, dataset_name))
|
|
|
|
|
|
def save_dataset(data_path, data, name):
|
|
data.to_csv(os.path.join(data_path, name), index=False)
|
|
|
|
|
|
def preprocess_dataset(data):
|
|
data = data.replace(np.nan, '', regex=True)
|
|
|
|
data['description'] = data['description'].str.replace(r"\W+", " ", regex=True)
|
|
data['description'] = data['description'].str.replace(r"url_\w+", " ", regex=True)
|
|
data['description'] = data['description'].str.replace(r"\s+", " ", regex=True)
|
|
|
|
data['text'] = data[['title', 'department', 'company_profile', 'description', 'requirements', 'benefits']].apply(
|
|
lambda x: ' '.join(x), axis=1)
|
|
data['text'] = data['text'].str.lower()
|
|
|
|
tokenizer = RegexpTokenizer(r'\w+')
|
|
data['tokens'] = data['text'].apply(tokenizer.tokenize)
|
|
# data['tokens'] = data['text'].apply(lambda x: word_tokenize(x))
|
|
|
|
return data.drop(['job_id', 'department', 'company_profile', 'description', 'requirements', 'benefits', 'text'],
|
|
axis=1)
|
|
|
|
|
|
def to_dictionary(stop_words, category):
|
|
vocab = set()
|
|
sentences = category
|
|
for i in sentences:
|
|
for word in i:
|
|
word_lower = word.lower()
|
|
if word_lower not in stop_words and word_lower.isalpha():
|
|
vocab.add(ps.stem(word_lower))
|
|
word_dic = Counter(vocab)
|
|
return word_dic
|
|
|
|
|
|
# For tokenizing the words and putting it into the word list
|
|
def return_word_list(stop_words, sentence):
|
|
word_list = []
|
|
for word in sentence:
|
|
word_lower = word.lower()
|
|
if word_lower not in stop_words and word_lower.isalpha():
|
|
word_list.append(ps.stem(word_lower))
|
|
return word_list
|
|
|
|
|
|
# For finding the conditional probability
|
|
def return_category_probability_dictionary(dict_category_wise_probability, word_list, probab, prob_df, pro):
|
|
help_dict = {}
|
|
for i, row in probab.iterrows():
|
|
for word in word_list:
|
|
if (word in prob_df.index.tolist()):
|
|
pro = pro * probab.loc[i, word]
|
|
help_dict[i] = pro * dict_category_wise_probability[i]
|
|
pro = 1
|
|
return help_dict
|
|
|
|
|
|
class NaiveBayes:
|
|
def __init__(self, data, labels, features):
|
|
self.data = data
|
|
self.labels = labels
|
|
self.features = features
|
|
|
|
def fit(self):
|
|
pass
|
|
|
|
def transform(self):
|
|
pass
|
|
|
|
def predict(self):
|
|
pass
|
|
|
|
def evaluate(self, test_data):
|
|
pass
|
|
|
|
|
|
def main():
|
|
abs_data_path, dataset_name = os.path.abspath('./data'), 'dataset.csv'
|
|
download_data(abs_data_path, dataset_name)
|
|
data = pd.read_csv(os.path.join(abs_data_path, dataset_name))
|
|
clean_data = preprocess_dataset(data)
|
|
x, y = clean_data['tokens'], clean_data['fraudulent']
|
|
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2,
|
|
random_state=123, stratify=y)
|
|
train_data = pd.concat([x_train, y_train], axis=1)
|
|
print(train_data)
|
|
test_data = pd.concat([x_test, y_test], axis=1)
|
|
|
|
classes = [0, 1]
|
|
# Building the master dictionary that contains the word frequency
|
|
master_dict = {}
|
|
stop_words = set(stopwords.words('english'))
|
|
|
|
for category in classes:
|
|
category_temp = train_data[train_data['fraudulent'] == category]
|
|
temp_dict = to_dictionary(stop_words, category_temp['tokens'])
|
|
master_dict[category] = temp_dict
|
|
|
|
# Converting the dictionary to data frame for ease of use
|
|
word_frequency_df = pd.DataFrame(master_dict).fillna(0)
|
|
print(word_frequency_df)
|
|
|
|
# Building the dictionary that holds category wise sums and word wise probabilities
|
|
categories_to_iterate = list(word_frequency_df) # Prepared category for zip
|
|
category_sum = []
|
|
for category in categories_to_iterate:
|
|
category_sum.append(word_frequency_df[category].sum()) # Prepared category sum for zip
|
|
dict_category_sum = dict(zip(categories_to_iterate, category_sum)) # Dictionary with category based sums
|
|
print(f"The dictionary that holds the cateogry wise sum is {dict_category_sum}")
|
|
|
|
dict_category_wise_probability = dict_category_sum.copy()
|
|
|
|
total_sentences_values = dict_category_wise_probability.values()
|
|
total = sum(total_sentences_values)
|
|
|
|
for key, value in dict_category_wise_probability.items():
|
|
dict_category_wise_probability[key] = value / total
|
|
print(f"The dictionay that holds the category wise probabilities is {dict_category_wise_probability}")
|
|
|
|
# Building word probability with the application of smoothing
|
|
prob_df = word_frequency_df
|
|
for category in categories_to_iterate:
|
|
for index, row in prob_df.iterrows():
|
|
row[category] = ((row[category] + 1) / (dict_category_sum[category] + len(prob_df[category]))) # Smoothing
|
|
prob_df.at[index, category] = row[category]
|
|
print(prob_df)
|
|
|
|
probab = prob_df.transpose()
|
|
pro = 1
|
|
|
|
match = 0
|
|
total = 0
|
|
counter = 0
|
|
for _, row in test_data.iterrows():
|
|
if counter > 200:
|
|
break
|
|
ind = row['fraudulent']
|
|
text = row['tokens']
|
|
word_list = return_word_list(stop_words, text)
|
|
|
|
# Get the dictionary that contains the final probability P(word|category)
|
|
help_dict = return_category_probability_dictionary(dict_category_wise_probability, word_list, probab, prob_df,
|
|
pro)
|
|
|
|
if ind == max(help_dict, key=help_dict.get):
|
|
match = match + 1
|
|
total = total + 1
|
|
counter += 1
|
|
|
|
print(f"The model predicted {match} correctly of {total}")
|
|
print(f"The model accuracy then is {int((match / total) * 100)}%")
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|