Systemy_dialogowe/evaluate/evaluate.ipynb

271 lines
6.3 KiB
Plaintext
Raw Normal View History

2022-04-26 18:33:20 +02:00
{
"cells": [
{
"cell_type": "code",
"execution_count": 14,
"id": "443692c0",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sklearn.metrics import accuracy_score"
]
},
{
"cell_type": "code",
"execution_count": 34,
"id": "77be6d6c",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>0</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>hello</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>help</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>request</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>affirm</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>request</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>586</th>\n",
" <td>null</td>\n",
" </tr>\n",
" <tr>\n",
" <th>587</th>\n",
" <td>request</td>\n",
" </tr>\n",
" <tr>\n",
" <th>588</th>\n",
" <td>null</td>\n",
" </tr>\n",
" <tr>\n",
" <th>589</th>\n",
" <td>ack</td>\n",
" </tr>\n",
" <tr>\n",
" <th>590</th>\n",
" <td>hello</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>591 rows × 1 columns</p>\n",
"</div>"
],
"text/plain": [
" 0\n",
"0 hello\n",
"1 help\n",
"2 request\n",
"3 affirm\n",
"4 request\n",
".. ...\n",
"586 null\n",
"587 request\n",
"588 null\n",
"589 ack\n",
"590 hello\n",
"\n",
"[591 rows x 1 columns]"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"expected = pd.read_csv('evaluate.tsv', sep='\\t', header=None)\n",
"expected = expected.fillna('null')\n",
"expected"
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "b77d4102",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>0</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>hello</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>help</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>request</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>affirm</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>request</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>586</th>\n",
" <td>null</td>\n",
" </tr>\n",
" <tr>\n",
" <th>587</th>\n",
" <td>request</td>\n",
" </tr>\n",
" <tr>\n",
" <th>588</th>\n",
" <td>null</td>\n",
" </tr>\n",
" <tr>\n",
" <th>589</th>\n",
" <td>ack</td>\n",
" </tr>\n",
" <tr>\n",
" <th>590</th>\n",
" <td>hello</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>591 rows × 1 columns</p>\n",
"</div>"
],
"text/plain": [
" 0\n",
"0 hello\n",
"1 help\n",
"2 request\n",
"3 affirm\n",
"4 request\n",
".. ...\n",
"586 null\n",
"587 request\n",
"588 null\n",
"589 ack\n",
"590 hello\n",
"\n",
"[591 rows x 1 columns]"
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"predicted = pd.read_csv('predicted.tsv', sep='\\t', header=None)\n",
"predicted = predicted.fillna('null')\n",
"predicted"
]
},
{
"cell_type": "code",
"execution_count": 39,
"id": "79ecc70a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1.0\n"
]
}
],
"source": [
"print(accuracy_score(expected, predicted))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}