SI2020/MainTomasz.cpp

1151 lines
26 KiB
C++

#include<iostream>
#include<stdlib.h>
#include<windows.h>
#include<conio.h>
#include<string>
#include<list>
#include<set>
#include<math.h>
#include<stack>
using namespace std;
const float maxFloat=FLT_MAX;
const int ROW = 27;
const int COL = 27;
typedef pair<int, int> Pair;
typedef pair<double, pair<int, int>> pPair;
struct cell
{
int parent_i, parent_j;
double f, g, h;
};
char pole[27][27][2];
int poleInt[27][27][2];
int pozycjaTraktoraX = 1, pozycjaTraktoraY = 1;
char currentWay = 'S';
char underTraktor = '.';
double timeToDest = 0.0;
double **weightMatrix;
double neuroOutputPole[25][25];
double *inputNeurons;
double **grad;
double **avrGrad;
double numberOfTests;
void color(string foregroundColor, string backgroundColor)
{
HANDLE hOut;
hOut = GetStdHandle(STD_OUTPUT_HANDLE);
int foregroundCode = 15;
if (foregroundColor == "black")
foregroundCode = 0;
if (foregroundColor == "dark_blue")
foregroundCode = 1;
if (foregroundColor == "green")
foregroundCode = 2;
if (foregroundColor == "cyan")
foregroundCode = 3;
if (foregroundColor == "dark_red")
foregroundCode = 4;
if (foregroundColor == "purple")
foregroundCode = 5;
if (foregroundColor == "dark_yellow")
foregroundCode = 6;
if (foregroundColor == "light_gray")
foregroundCode = 7;
if (foregroundColor == "gray")
foregroundCode = 8;
if (foregroundColor == "blue")
foregroundCode = 9;
if (foregroundColor == "lime")
foregroundCode = 10;
if (foregroundColor == "light_blue")
foregroundCode = 11;
if (foregroundColor == "red")
foregroundCode = 12;
if (foregroundColor == "magenta")
foregroundCode = 13;
if (foregroundColor == "yellow")
foregroundCode = 14;
if (foregroundColor == "white")
foregroundCode = 15;
int backgroundCode = 0;
if (backgroundColor == "black")
backgroundCode = 0;
if (backgroundColor == "dark_blue")
backgroundCode = 1;
if (backgroundColor == "green")
backgroundCode = 2;
if (backgroundColor == "cyan")
backgroundCode = 3;
if (backgroundColor == "dark_red")
backgroundCode = 4;
if (backgroundColor == "purple")
backgroundCode = 5;
if (backgroundColor == "dark_yellow")
backgroundCode = 6;
if (backgroundColor == "light_gray")
backgroundCode = 7;
if (backgroundColor == "gray")
backgroundCode = 8;
if (backgroundColor == "blue")
backgroundCode = 9;
if (backgroundColor == "lime")
backgroundCode = 10;
if (backgroundColor == "light_blue")
backgroundCode = 11;
if (backgroundColor == "red")
backgroundCode = 12;
if (backgroundColor == "magenta")
backgroundCode = 13;
if (backgroundColor == "yellow")
backgroundCode = 14;
if (backgroundColor == "white")
backgroundCode = 15;
SetConsoleTextAttribute(hOut, foregroundCode + backgroundCode * 16);
}
void SetWindow(int Width, int Height)
{
_COORD coord;
coord.X = Width;
coord.Y = Height;
_SMALL_RECT Rect;
Rect.Top = 0;
Rect.Left = 0;
Rect.Bottom = Height - 1;
Rect.Right = Width - 1;
HANDLE Handle = GetStdHandle(STD_OUTPUT_HANDLE); // Get Handle
SetConsoleScreenBufferSize(Handle, coord); // Set Buffer Size
SetConsoleWindowInfo(Handle, TRUE, &Rect); // Set Window Size
}
void updatePola()
{
system("cls");
for (int i = 0; i < 27; i++)
{
for (int j = 0; j < 27; j++)
{
char item = pole[i][j][0];
switch (item)
{
case 'B':
{
color("purple", "dark_yellow");
}break;
case 'T':
{
color("red", "dark_yellow");
}break;
case 'G':
{
color("lime", "dark_yellow");
}break;
case '.':
{
color("yellow", "dark_yellow");
}break;
case '#':
{
color("light_gray", "gray");
}break;
}
cout << pole[i][j][0];
}
cout << endl;
color("white", "black");
}
}
void correctMovement(char wantedWay)
{
while (currentWay != wantedWay)
{
switch (currentWay)
{
case 'N':
{
if (wantedWay == 'S')
currentWay = wantedWay;
else
currentWay = 'W';
}break;
case 'S':
{
if (wantedWay == 'N')
currentWay = wantedWay;
else
currentWay = 'W';
}break;
case 'W':
{
if (wantedWay == 'E')
currentWay = wantedWay;
else
currentWay = 'N';
}break;
case 'E':
{
if (wantedWay == 'W')
currentWay = wantedWay;
else
currentWay = 'N';
}break;
}
}
}
void Move(char kierunek)
{
switch (kierunek)
{
//góra-(w)
case 'w':
{
if (pole[pozycjaTraktoraY - 1][pozycjaTraktoraX][0] != '#')
{
correctMovement('N');
pole[pozycjaTraktoraY][pozycjaTraktoraX][0] = underTraktor;
pozycjaTraktoraY--;
underTraktor = pole[pozycjaTraktoraY][pozycjaTraktoraX][0];
pole[pozycjaTraktoraY][pozycjaTraktoraX][0] = 'T';
}
updatePola();
}break;
//dół-(s)
case 's':
{
if (pole[pozycjaTraktoraY + 1][pozycjaTraktoraX][0] != '#')
{
correctMovement('S');
pole[pozycjaTraktoraY][pozycjaTraktoraX][0] = underTraktor;
pozycjaTraktoraY++;
underTraktor = pole[pozycjaTraktoraY][pozycjaTraktoraX][0];
pole[pozycjaTraktoraY][pozycjaTraktoraX][0] = 'T';
}
updatePola();
}break;
//lewo-(a)
case 'a':
{
if (pole[pozycjaTraktoraY][pozycjaTraktoraX - 1][0] != '#')
{
correctMovement('W');
pole[pozycjaTraktoraY][pozycjaTraktoraX][0] = underTraktor;
pozycjaTraktoraX--;
underTraktor = pole[pozycjaTraktoraY][pozycjaTraktoraX][0];
pole[pozycjaTraktoraY][pozycjaTraktoraX][0] = 'T';
}
updatePola();
}break;
//prawo-(d)
case 'd':
{
if (pole[pozycjaTraktoraY][pozycjaTraktoraX + 1][0] != '#')
{
correctMovement('E');
pole[pozycjaTraktoraY][pozycjaTraktoraX][0] = underTraktor;
pozycjaTraktoraX++;
underTraktor = pole[pozycjaTraktoraY][pozycjaTraktoraX][0];
pole[pozycjaTraktoraY][pozycjaTraktoraX][0] = 'T';
}
updatePola();
}break;
}
}
bool isValid(int x, int y)
{
if (pole[x][y][0] != '#')
{
return true;
}
return false;
}
bool isDestination(int x, int y,Pair dest)
{
if (dest.first == x && dest.second == y)
{
return true;
}
return false;
}
double calculateHValue(int x, int y, Pair dest)
{
return abs(x - dest.first) + abs(y - dest.second);
}
void tracePath(cell cellDetails[][COL], Pair dest, string action)
{
//printf("\nThe Path is "); //----start info
int row = dest.first;
int col = dest.second;
pair<int, int>src = make_pair(pozycjaTraktoraX, pozycjaTraktoraY);
timeToDest = 0;
stack<Pair> Path;
while (!(cellDetails[row][col].parent_i == row
&& cellDetails[row][col].parent_j == col))
{
Path.push(make_pair(row, col));
int temp_row = cellDetails[row][col].parent_i;
int temp_col = cellDetails[row][col].parent_j;
row = temp_row;
col = temp_col;
}
Path.push(make_pair(row, col));
while (!Path.empty())
{
pair<int, int> p = Path.top();
Path.pop();
if (action == "move" || action == "moveWithTime")
{
if (p.first > pozycjaTraktoraX)
Move('d');
if (p.first < pozycjaTraktoraX)
Move('a');
if (p.second > pozycjaTraktoraY)
Move('s');
if (p.second < pozycjaTraktoraY)
Move('w');
Sleep(1000);
}
if (action == "time" || action == "moveWithTime")
{
if ((p.first != src.first || p.second != src.second)
&& (p.first != dest.first || p.second != dest.second))
{
timeToDest += ((int)pole[p.second][p.first][1] - 48)*1.0;
}
}
//printf("-> (%d,%d) ", p.first, p.second); //---- informacja wierzchołku
}
if (action == "time" || action == "moveWithTime")
{
timeToDest /= 2;
}
return;
}
void aStarSearch(int grid[][COL], Pair src, Pair dest, string action)
{
bool closedList[ROW][COL];
memset(closedList, false, sizeof(closedList));
cell cellDetails[ROW][COL];
int i, j;
for (i = 0; i < ROW; i++)
{
for (j = 0; j < COL; j++)
{
cellDetails[i][j].f = maxFloat;
cellDetails[i][j].g = maxFloat;
cellDetails[i][j].h = maxFloat;
cellDetails[i][j].parent_i = -1;
cellDetails[i][j].parent_j = -1;
}
}
i = src.first, j = src.second;
cellDetails[i][j].f = 0.0;
cellDetails[i][j].g = 0.0;
cellDetails[i][j].h = 0.0;
cellDetails[i][j].parent_i = i;
cellDetails[i][j].parent_j = j;
set<pPair> openList;
openList.insert(make_pair(0.0, make_pair(i, j)));
bool foundDest = false;
while (!openList.empty())
{
pPair p = *openList.begin();
openList.erase(openList.begin());
i = p.second.first;
j = p.second.second;
closedList[i][j] = true;
double gNew, hNew, fNew;
double waga = 1.0;
waga = ((double)pole[j][i][1] - 48)*1.0;//----waga
//----------- 1st Successor (North) ------------
if (isValid(i - 1, j) == true)
{
if (isDestination(i - 1, j, dest) == true)
{
cellDetails[i - 1][j].parent_i = i;
cellDetails[i - 1][j].parent_j = j;
//printf("The destination cell is found\n");
tracePath(cellDetails, dest, action);
foundDest = true;
return;
}
else if (closedList[i - 1][j] == false)
{
gNew = cellDetails[i][j].g + waga;
hNew = calculateHValue(i - 1, j, dest);
fNew = gNew + hNew;
if (cellDetails[i - 1][j].f == maxFloat ||
cellDetails[i - 1][j].f > fNew)
{
openList.insert(make_pair(fNew,
make_pair(i - 1, j)));
cellDetails[i - 1][j].f = fNew;
cellDetails[i - 1][j].g = gNew;
cellDetails[i - 1][j].h = hNew;
cellDetails[i - 1][j].parent_i = i;
cellDetails[i - 1][j].parent_j = j;
}
}
}
//----------- 2nd Successor (South) ------------
if (isValid(i + 1, j) == true)
{
if (isDestination(i + 1, j, dest) == true)
{
cellDetails[i + 1][j].parent_i = i;
cellDetails[i + 1][j].parent_j = j;
//printf("The destination cell is found\n");
tracePath(cellDetails, dest, action);
foundDest = true;
return;
}
else if (closedList[i + 1][j] == false)
{
gNew = cellDetails[i][j].g + waga;
hNew = calculateHValue(i + 1, j, dest);
fNew = gNew + hNew;
if (cellDetails[i + 1][j].f == maxFloat ||
cellDetails[i + 1][j].f > fNew)
{
openList.insert(make_pair(fNew, make_pair(i + 1, j)));
cellDetails[i + 1][j].f = fNew;
cellDetails[i + 1][j].g = gNew;
cellDetails[i + 1][j].h = hNew;
cellDetails[i + 1][j].parent_i = i;
cellDetails[i + 1][j].parent_j = j;
}
}
}
//----------- 3rd Successor (East) ------------
if (isValid(i, j + 1) == true)
{
if (isDestination(i, j + 1, dest) == true)
{
cellDetails[i][j + 1].parent_i = i;
cellDetails[i][j + 1].parent_j = j;
//printf("The destination cell is found\n");
tracePath(cellDetails, dest, action);
foundDest = true;
return;
}
else if (closedList[i][j + 1] == false)
{
gNew = cellDetails[i][j].g + waga;
hNew = calculateHValue(i, j + 1, dest);
fNew = gNew + hNew;
if (cellDetails[i][j + 1].f == maxFloat ||
cellDetails[i][j + 1].f > fNew)
{
openList.insert(make_pair(fNew,
make_pair(i, j + 1)));
cellDetails[i][j + 1].f = fNew;
cellDetails[i][j + 1].g = gNew;
cellDetails[i][j + 1].h = hNew;
cellDetails[i][j + 1].parent_i = i;
cellDetails[i][j + 1].parent_j = j;
}
}
}
//----------- 4th Successor (West) ------------
if (isValid(i, j - 1) == true)
{
if (isDestination(i, j - 1, dest) == true)
{
cellDetails[i][j - 1].parent_i = i;
cellDetails[i][j - 1].parent_j = j;
//printf("The destination cell is found\n");
tracePath(cellDetails, dest, action);
foundDest = true;
return;
}
else if (closedList[i][j - 1] == false)
{
gNew = cellDetails[i][j].g + waga;
hNew = calculateHValue(i, j - 1, dest);
fNew = gNew + hNew;
if (cellDetails[i][j - 1].f == maxFloat ||
cellDetails[i][j - 1].f > fNew)
{
openList.insert(make_pair(fNew,
make_pair(i, j - 1)));
cellDetails[i][j - 1].f = fNew;
cellDetails[i][j - 1].g = gNew;
cellDetails[i][j - 1].h = hNew;
cellDetails[i][j - 1].parent_i = i;
cellDetails[i][j - 1].parent_j = j;
}
}
}
}
/*if (foundDest == false)
printf("Failed to find the Destination Cell\n");*/
return;
}
void gogo(int endX,int endY)
{
updatePola();
Sleep(1000);
int grid[27][27];
for (int i = 0; i < 27; i++)
{
for (int j = 0; j < 27; j++)
{
grid[i][j] = 0;
}
}
Pair src = make_pair(pozycjaTraktoraX, pozycjaTraktoraY);
Pair dest = make_pair(endX, endY);
//aStarSearch(grid, src, dest, "time");
aStarSearch(grid, src, dest, "move");
//aStarSearch(grid, src, dest, "moveWithTime");
//cout << timeToDest;
}
double countTimeToDest(int endX, int endY)
{
//updatePola();
int grid[27][27];
for (int i = 0; i < 27; i++)
{
for (int j = 0; j < 27; j++)
{
grid[i][j] = 0;
}
}
Pair src = make_pair(pozycjaTraktoraX, pozycjaTraktoraY);
Pair dest = make_pair(endX, endY);
aStarSearch(grid, src, dest, "time");
return timeToDest;
}
double Sigmoid(double number)
{
int tempInt = 0;
if (number < 0)
{
tempInt = 1;
}
return tempInt + (number / (1.0 + abs(number)));
}
double pSigmoid(double number)
{
int tempInt = 1;
if (number < 0)
{
tempInt = -1;
}
return tempInt * (number / ((1.0 + abs(number))*(1.0 + abs(number))));
}
double lookOfVege(int x, int y)
{
int state = poleInt[y][x][1];
int proOrFer = poleInt[y][x][0];
if (state == 0)// - brak
{
return 0.0;
}
if (state >= 1 && state < 15)// - kiełek
{
return 1.0;
}
if (state >= 15 && state < 30)// - młoda roślina
{
return 2.0;
}
if (state >= 30 && state < 60)// - dojrzała
{
return 3.0;
}
if (state >= 60 && state < 85)// - przejrzała
{
if (proOrFer == 2 && state < 70)// - z środkiem dojrzała
{
return 3.0;
}
return 4.0;
}
if (state >= 85 && state <= 100)// - zniszczona
{
if (proOrFer == 2 && state < 90)// - z środkiem przejrzała
{
return 4.0;
}
return 5.0;
}
}
double setValusesRange(double a, double b, double num)
{
int temp = 1;
if (a > b)
{
temp = -1;
}
double avr = ((a + b) / 2)*temp;
return Sigmoid(num - avr);
}
void gradient(int desiredOutput[25][25])
{
const int numberOfCellsInPole = (25 * 25);
const int inputNeuronsCount = numberOfCellsInPole * 4;
grad = (double **)malloc(numberOfCellsInPole * sizeof(double *));
for (int i = 0; i < numberOfCellsInPole; i++)
{
grad[i] = (double *)malloc(inputNeuronsCount * sizeof(double));
}
double z;
for (int i = 0; i < numberOfCellsInPole; i++)
{
for (int j = 0; j < inputNeuronsCount; j++)
{
if (weightMatrix[i][j] != 0)
{
int x, y;
y = i / 25;
x = i % 25;
grad[i][j] = 2 * pSigmoid(weightMatrix[i][j] * inputNeurons[j]) * inputNeurons[j] * (neuroOutputPole[y][x] - desiredOutput[y][x]);
}
else
{
grad[i][j] = 0;
}
}
}
//cout << "grad set" << endl;
}
void buildMatrix()
{
const int numberOfCellsInPole = (25 * 25);
const int inputNeuronsCount = numberOfCellsInPole * 4;
weightMatrix = (double **)malloc(numberOfCellsInPole * sizeof(double *));
for (int i = 0; i < numberOfCellsInPole; i++)
{
weightMatrix[i] = (double *)malloc(inputNeuronsCount * sizeof(double));
}
for (int i = 0; i < numberOfCellsInPole; i++)
{
for (int j = 0; j < inputNeuronsCount; j++)
{
if (j >= (i * 4) && j < ((i + 1) * 4))
{
weightMatrix[i][j] = 1.0;
}
else
{
weightMatrix[i][j] = 0.0;
}
}
}
}
void buildAvrGrad()
{
const int numberOfCellsInPole = (25 * 25);
const int inputNeuronsCount = numberOfCellsInPole * 4;
avrGrad = (double **)malloc(numberOfCellsInPole * sizeof(double *));
for (int i = 0; i < numberOfCellsInPole; i++)
{
avrGrad[i] = (double *)malloc(inputNeuronsCount * sizeof(double));
}
for (int i = 0; i < numberOfCellsInPole; i++)
{
for (int j = 0; j < inputNeuronsCount; j++)
{
avrGrad[i][j] = 0;
}
}
}
double neuronsInputBuild(int desiredOutput[25][25])
{
const int numberOfCellsInPole = (25 * 25);// -1;
const int inputNeuronsCount = numberOfCellsInPole * 4;
double typeOfVege[numberOfCellsInPole];
double timeToGetToVege[numberOfCellsInPole];
double protectOrFertilize[numberOfCellsInPole];
double stateOfVege[numberOfCellsInPole];
for (int i = 1; i <= 25; i++)
{
for (int j = 1; j <= 25; j++)
{
int tempCell = (((i - 1) * 25) + (j - 1));
if (pole[i][j][0] == 'T')
{
/*if (j >= pozycjaTraktoraX && i >= pozycjaTraktoraY)
{
int tempCell = (((i - 1) * 25) + (j - 1))-1;
}*/
typeOfVege[tempCell] = 0;//type after weight 1-9
timeToGetToVege[tempCell] = 0;//time x.0
protectOrFertilize[tempCell] = 0;//0.0 1.0 2.0 3.0
stateOfVege[tempCell] = 0;//0.0-5.0
}
else
{
typeOfVege[tempCell] = setValusesRange(1, 9, ((double)pole[i][j][1]-48));//type after weight 1-9
timeToGetToVege[tempCell] = setValusesRange(25 * 9, 0, countTimeToDest(j, i));//time x.0
protectOrFertilize[tempCell] = setValusesRange(3, 0, poleInt[i][j][0]);//0.0 1.0 2.0 3.0
stateOfVege[tempCell] = setValusesRange(0, 5, lookOfVege(j, i));//0.0-5.0
}
}
}
//cout << "set neurons";
inputNeurons = (double *)malloc(inputNeuronsCount * sizeof(double));
for (int i = 0; i < numberOfCellsInPole; i++)
{
inputNeurons[i * 4] = typeOfVege[i];
inputNeurons[(i * 4) + 1] = timeToGetToVege[i];
inputNeurons[(i * 4) + 2] = protectOrFertilize[i];
inputNeurons[(i * 4) + 3] = stateOfVege[i];
}
/*double **weightMatrix = (double **)malloc(numberOfCellsInPole * sizeof(double *));
for (int i = 0; i < numberOfCellsInPole; i++)
{
weightMatrix[i] = (double *)malloc(inputNeuronsCount * sizeof(double));
}
for (int i = 0; i < numberOfCellsInPole; i++)
{
for (int j = 0; j < inputNeuronsCount; j++)
{
if (j >= (i * 4) && j < ((i + 1) * 4))
{
weightMatrix[i][j] = 1;
}
else
{
weightMatrix[i][j] = 0;
}
}
}*/
//0 1 2 inp
//1
//2
//num
//inp -> a inp(0-3)
//inp -> a1 inp(4-7)
//inp -> a2 inp(8-11)
//updatePola();
//cout << "matrix setup";
//firstHiddenLayer();
//updatePola();
double *outputLayer = (double *)malloc(numberOfCellsInPole * sizeof(double));
for (int i = 0; i < numberOfCellsInPole; i++)
{
double sum = 0;
for (int j = 0; j < inputNeuronsCount; j++)
{
sum += weightMatrix[i][j] * inputNeurons[j];
}
outputLayer[i] = Sigmoid(sum);
}
for (int i = 0; i < 25; i++)
{
for (int j = 0; j < 25; j++)
{
int tempCell = ((i * 25) + j);
neuroOutputPole[i][j] = outputLayer[tempCell];
}
}
double cost = 0.0;
for (int i = 0; i < 25; i++)
{
for (int j = 0; j < 25; j++)
{
double tempNum = neuroOutputPole[i][j] - desiredOutput[i][j];
cost += (tempNum*tempNum);
}
}
//updatePola();
return cost;
}
void backProp(int desiredOuput[25][25])
{
/*double node[25][25];
for (int i = 0; i < 25; i++)
{
for (int j = 0; j < 25; j++)
{
double tempNum = neuroOutputPole[i][j] - desiredOuput[i][j];
node[i][j] = (tempNum*tempNum);
}
}
cout << neuroOutputPole[1][2] << endl;//->0
cout << neuroOutputPole[4][3] << endl;//->1
updatePola();*/
const int numberOfCellsInPole = (25 * 25);
const int inputNeuronsCount = numberOfCellsInPole * 4;
double cost;
cost = neuronsInputBuild(desiredOuput);
int i = 0;
while (cost > 50 && i<30)
{
cout << i << " ";
gradient(desiredOuput);
for (int i = 0; i < numberOfCellsInPole; i++)
{
for (int j = 0; j < inputNeuronsCount; j++)
{
//cout << grad[i][j] << " ";
weightMatrix[i][j] -= grad[i][j];
}
}
cost = neuronsInputBuild(desiredOuput);
i++;
}
cout << "--END--" << endl;
for (int i = 0; i < numberOfCellsInPole; i++)
{
for (int j = 0; j < inputNeuronsCount; j++)
{
if (weightMatrix[i][j] != 0)
{
avrGrad[i][j] += 1 - weightMatrix[i][j]/numberOfTests;
}
}
}
//double cost = neuronsInputBuild(desiredOuput);
//cout << oldcost << endl;
//cout << cost << endl;
/*
for (int i = 0; i < 25; i++)
{
for (int j = 0; j < 25; j++)
{
if (desiredOuput[i][j] == 1)
{
cout << "!!" << node[i][j] << "!! ";
}
else
{
cout << node[i][j] << " ";
}
}
}*/
}
void network(int desiredX,int desiredY)
{
int desiredPole[25][25];
for (int i = 0; i < 25; i++)
{
for (int j = 0; j < 25; j++)
{
desiredPole[i][j] = 0;
}
}
desiredPole[desiredY - 1][desiredX - 1] = 1;
//double cost = neuronsInputBuild(desiredPole);
backProp(desiredPole);
}
void bestMatrixBuild()
{
const int numberOfCellsInPole = (25 * 25);
const int inputNeuronsCount = numberOfCellsInPole * 4;
for (int i = 0; i < numberOfCellsInPole; i++)
{
for (int j = 0; j < inputNeuronsCount; j++)
{
weightMatrix[i][j] -= avrGrad[i][j];
}
}
}
void test1()
{
pole[1][3][0] = 'B';
pole[1][3][1] = '9';
pole[3][1][0] = 'B';
pole[3][1][1] = '9';
poleInt[1][3][1] = 1;
poleInt[3][1][1] = 1;
}
void test2()
{
for (int i = 1; i < 26; i++)
{
for (int j = 1; j < i; j++)
{
pole[i][j][0] = 'B';
pole[i][j][1] = '9';
poleInt[i][j][1] = 1;
}
}
test1();
updatePola();
}
void baseSetup()
{
for (int i = 0; i < 25; i++)
{
pole[i + 1][i + 1][0] = 'B';
pole[i + 1][i + 1][1] = '9';
poleInt[i + 1][i + 1][1] = 1;
}
pole[1][1][0] = 'T';
pole[1][1][1] = '1';
updatePola();
}
void start1()
{
int goalX = 3, goalY = 4;
test1();
baseSetup();
pole[goalY][goalX][0] = 'G';
pole[goalY][goalX][1] = '9';
pole[goalY][goalX][1] = 1;
gogo(goalX, goalY);
}
void start2()
{
int goalX = 6, goalY = 6;
test2();
baseSetup();
pole[goalY][goalX][0] = 'G';
pole[goalY][goalX][1] = '9';
pole[goalY][goalX][1] = 1;
gogo(goalX, goalY);
}
void start3()
{
int goalX = 6, goalY = 9;
test2();
baseSetup();
pole[goalY][goalX][0] = 'G';
pole[goalY][goalX][1] = '9';
pole[goalY][goalX][1] = 1;
gogo(goalX, goalY);
}
void neuroTest1(int bX,int bY)
{
pole[bY][bX][0] = 'B';
pole[bY][bX][1] = '9';
poleInt[bY][bX][0] = 0;
poleInt[bY][bX][1] = 16;
updatePola();
network(bX, bY);
pole[bY][bX][0] = '.';
pole[bY][bX][1] = '1';
poleInt[bY][bX][0] = 0;
poleInt[bY][bX][1] = 0;
updatePola();
}
void neuroTest2()
{
int bX[5] = { 4,24,24,25,25 }, bY[5] = {5,1,2,2,1};
for (int i = 0; i < 5; i++)
{
pole[bY[i]][bX[i]][0] = 'B';
pole[bY[i]][bX[i]][1] = '9';
poleInt[bY[i]][bX[i]][0] = 0;
poleInt[bY[i]][bX[i]][1] = 8;
}
poleInt[bY[4]][bX[4]][0] = 3;
poleInt[bY[4]][bX[4]][1] = 70;
updatePola();
network(bX[4], bY[4]);
for (int i = 0; i < 5; i++)
{
pole[bY[i]][bX[i]][0] = '.';
pole[bY[i]][bX[i]][1] = '1';
poleInt[bY[i]][bX[i]][0] = 0;
poleInt[bY[i]][bX[i]][1] = 0;
}
updatePola();
}
void neuroStart1()
{
int b1X = 4, b1Y = 5;
int b2X = 24, b2Y = 1;
int b3X = 24, b3Y = 2;
int b4X = 25, b4Y = 2;
int b5X = 25, b5Y = 1;
pozycjaTraktoraX = 1, pozycjaTraktoraY = 1;
pole[pozycjaTraktoraY][pozycjaTraktoraX][0] = 'T';
pole[pozycjaTraktoraY][pozycjaTraktoraX][1] = '1';
//underTraktor='B'
//pole[pozycjaTraktoraY][pozycjaTraktoraX][1] = '9';
buildMatrix();
buildAvrGrad();
numberOfTests = 6;
neuroTest1(b1X, b1Y);
buildMatrix();
neuroTest1(b2X, b2Y);
buildMatrix();
neuroTest1(b3X, b3Y);
buildMatrix();
neuroTest1(b4X, b4Y);
buildMatrix();
neuroTest1(b5X, b5Y);
buildMatrix();
neuroTest2();
buildMatrix();
bestMatrixBuild();
}
void chousePath()
{
int tempOut[25][25];
for (int i = 0; i < 25; i++)
{
for (int j = 0; j < 25; j++)
{
tempOut[i][j] = 0;
}
}
neuronsInputBuild(tempOut);
const int numberOfCellsInPole = (25 * 25);
const int inputNeuronsCount = numberOfCellsInPole * 4;
double bestX=0, bestY=0, bestChance=1;
for (int i = 0; i < 25; i++)
{
for (int j = 0; j < 25; j++)
{
//cout << neuroOutputPole[i][j] << " ";
double tempChance;
if (pole[i + 1][j + 1][0] == 'T')
{
tempChance = 1;
}
else
{
tempChance = neuroOutputPole[i][j];
}
//cout << tempChance << " ";
if (tempChance < bestChance)
{
bestX = j;
bestY = i;
bestChance = tempChance;
}
}
}
//cout << bestChance << " " << bestX + 1 << " " << bestY + 1 << endl;
//Sleep(10000);
gogo(bestX+1, bestY+1);
//Sleep(100000);
}
void testOfNeuroMove()
{
pole[1][2][0] = 'B';
pole[1][2][1] = '9';
poleInt[1][2][0] = 0;
poleInt[1][2][1] = 50;
pole[1][3][0] = 'B';
pole[1][3][1] = '9';
poleInt[1][3][0] = 0;
poleInt[1][3][1] = 60;
pole[1][4][0] = 'B';
pole[1][4][1] = '9';
poleInt[1][4][0] = 0;
poleInt[1][4][1] = 70;
updatePola();
}
int main()
{
SetWindow(50, 30);
//create pola//
for (int i = 0; i < 27; i++)
{
pole[i][0][0] = '#';
pole[0][i][0] = '#';
pole[26][i][0] = '#';
pole[i][26][0] = '#';
pole[i][0][1] = '9';
pole[0][i][1] = '9';
pole[26][i][1] = '9';
pole[i][26][1] = '9';
}
for (int i = 1; i < 26; i++)
{
for (int j = 1; j < 26; j++)
{
pole[i][j][0] = '.';
pole[i][j][1] = '1';
poleInt[i][j][0] = 0;
poleInt[i][j][1] = 0;
}
}
//baseSetup();
updatePola();
//start3(); // testy start 1-3
neuroStart1();
testOfNeuroMove();
//---------start---------//
bool traktorDziala = true;
char akcja;
do
{
chousePath();
/*akcja = _getch();
/if (akcja == 'w' || akcja == 's' || akcja == 'a' || akcja == 'd')
{
Move(akcja);
}
if (akcja == '0')
{
traktorDziala = false;
}*/
} while (traktorDziala);
//---------end---------//
return 0;
}