challenging-america-word-ga.../x_train.py

348 lines
9.9 KiB
Python
Raw Normal View History

2023-05-29 16:53:12 +02:00
from torch import nn
import torch
from torch.utils.data import DataLoader
import copy
from torch.utils.data import IterableDataset
import itertools
import lzma
import regex as re
import pickle
import scripts
import string
import pdb
import utils
def divide_chunks(l, n):
# looping till length l
for i in range(0, len(l), n):
yield l[i:i + n]
with open("vocab.pickle", 'rb') as handle:
vocab = pickle.load( handle)
vocab.set_default_index(vocab['<unk>'])
def look_ahead_iterator(gen):
seq = []
counter = 0
for item in gen:
seq.append(item)
if counter % 11 == 0 and counter !=0:
if len(seq) == 11:
yield seq
seq = []
counter+=1
def get_word_lines_from_file(file_name):
counter=0
with lzma.open(file_name, 'r') as fh:
for line in fh:
counter+=1
# if counter == 100000:
# break
line = line.decode("utf-8")
yield scripts.get_words_from_line(line)
class Grams_10(IterableDataset):
def load_vocab(self):
with open("vocab.pickle", 'rb') as handle:
vocab = pickle.load( handle)
return vocab
def __init__(self, text_file, vocab):
self.vocab = vocab
self.vocab.set_default_index(self.vocab['<unk>'])
self.text_file = text_file
def __iter__(self):
return look_ahead_iterator(
(self.vocab[t] for t in itertools.chain.from_iterable(get_word_lines_from_file(self.text_file))))
vocab_size = scripts.vocab_size
train_dataset = Grams_10('train/in.tsv.xz', vocab)
BATCH_SIZE = 2048
train_data = DataLoader(train_dataset, batch_size=BATCH_SIZE)
PREFIX_TRAIN = 'train'
PREFIX_VALID = 'dev-0'
BATCHES = []
# def read_train_file(folder_prefix, vocab):
# dataset_x = []
# dataset_y = []
# counter_lines = 0
# seq_len = 10
# with lzma.open(f'{folder_prefix}/in.tsv.xz', 'r') as train, open(f'{folder_prefix}/expected.tsv', 'r') as expected:
# for t_line, e_line in zip(train, expected):
# t_line = t_line.decode("utf-8")
# t_line = t_line.rstrip()
# e_line = e_line.rstrip()
# t_line = t_line.translate(str.maketrans('', '', string.punctuation))
# t_line_splitted_by_tab = t_line.split('\t')
# # t_line_cleared = t_line_splitted_by_tab[-2] + ' ' + e_line + ' ' + t_line_splitted_by_tab[-1]
# whole_line = t_line_splitted_by_tab[-2] + ' ' + e_line + ' ' + t_line_splitted_by_tab[-1]
# whole_line_splitted = list(scripts.get_words_from_line(whole_line))
# whole_lines_splitted = divide_chunks(whole_line_splitted, 11)
# for chunk_line in whole_line_splitted:
# left_context_splitted = chunk_line[0:10]
# seq_x = []
# for i in range(seq_len):
# index = -1 - i
# if len(left_context_splitted) < i + 1:
# seq_x.insert(0, '<empty>')
# else:
# seq_x.insert(0, left_context_splitted[-1 -i])
# left_vocabed = [vocab[t] for t in seq_x]
# dataset_x.append(left_vocabed )
# dataset_y.append([vocab[chunk_line[10]]])
# counter_lines+=1
# # if counter_lines > 20000:
# # break
# return dataset_x, dataset_y
def read_dev_file(folder_prefix, vocab):
dataset_x = []
dataset_y = []
counter_lines = 0
seq_len = 10
with lzma.open(f'{folder_prefix}/in.tsv.xz', 'r') as train, open(f'{folder_prefix}/expected.tsv', 'r') as expected:
for t_line, e_line in zip(train, expected):
t_line = t_line.decode("utf-8")
t_line = t_line.rstrip()
e_line = e_line.rstrip()
t_line = t_line.translate(str.maketrans('', '', string.punctuation))
t_line_splitted_by_tab = t_line.split('\t')
# t_line_cleared = t_line_splitted_by_tab[-2] + ' ' + e_line + ' ' + t_line_splitted_by_tab[-1]
left_context = t_line_splitted_by_tab[-2]
left_context_splitted = list(scripts.get_words_from_line(left_context))
seq_x = []
for i in range(seq_len):
index = -1 - i
if len(left_context_splitted) < i + 1:
seq_x.insert(0, '<empty>')
else:
seq_x.insert(0, left_context_splitted[-1 -i])
left_vocabed = [vocab[t] for t in seq_x]
dataset_x.append(left_vocabed )
dataset_y.append([vocab[e_line]])
counter_lines+=1
# if counter_lines > 20000:
# break
return dataset_x, dataset_y
def read_test_file(folder_prefix, vocab):
dataset_x = []
dataset_y = []
counter_lines = 0
seq_len = 10
with lzma.open(f'{folder_prefix}/in.tsv.xz', 'r') as train:
for t_line in train:
t_line = t_line.decode("utf-8")
t_line = t_line.rstrip()
t_line = t_line.translate(str.maketrans('', '', string.punctuation))
t_line_splitted_by_tab = t_line.split('\t')
# t_line_cleared = t_line_splitted_by_tab[-2] + ' ' + e_line + ' ' + t_line_splitted_by_tab[-1]
left_context = t_line_splitted_by_tab[-2]
left_context_splitted = list(scripts.get_words_from_line(left_context))
seq_x = []
for i in range(seq_len):
index = -1 - i
if len(left_context_splitted) < i + 1:
seq_x.insert(0, '<empty>')
else:
seq_x.insert(0, left_context_splitted[-1 -i])
left_vocabed = [vocab[t] for t in seq_x]
dataset_x.append(left_vocabed )
counter_lines+=1
# if counter_lines > 20000:
# break
return dataset_x
# train_set_x, train_set_y = read_file(PREFIX_TRAIN, vocab)
dev_set_x, dev_set_y = read_dev_file(PREFIX_VALID, vocab)
test_set_x = read_test_file('test-A', vocab)
# train_data_x = DataLoader(train_set_x, batch_size=4048)
# train_data_y = DataLoader(train_set_y, batch_size=4048)
# train_data_x = DataLoader(train_set_x, batch_size=4048)
# train_data_y = DataLoader(train_set_y, batch_size=4048)
dev_data_x = DataLoader(dev_set_x, batch_size=1)
dev_data_y = DataLoader(dev_set_y, batch_size=1)
test_set_x = DataLoader(test_set_x, batch_size=1)
# pdb.set_trace()
device = utils.device
model = utils.LanguageModel(scripts.vocab_size, utils.embed_size).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=utils.learning_rate)
criterion = torch.nn.NLLLoss()
model.train()
step = 0
last_best_acc = -1
epochs = 3
for epoch in range(epochs):
model.train()
for batch in train_data:
x = batch[:10]
y = [batch[10]]
x = [i.to(device) for i in x]
y = y[0].to(device)
optimizer.zero_grad()
ypredicted = model(x)
# pdb.set_trace()
loss = criterion(torch.log(ypredicted), y)
if step % 10000 == 0:
print('Step: ', step, loss)
# torch.save(model.state_dict(), f'model1_{step}.bin')
step += 1
loss.backward()
optimizer.step()
# evaluation
model.eval()
y_predeicted = []
top_50_true = 0
for d_x, d_y in zip(dev_data_x, dev_data_y):
# pdb.set_trace()
d_x = [i.to(device) for i in d_x]
# d_y = d_y.to(device)
optimizer.zero_grad()
ypredicted = model(d_x)
top = torch.topk(ypredicted[0], 64)
top_indices = top.indices.tolist()
if d_y[0] in top_indices:
top_50_true+=1
my_acc = top_50_true/len(dev_data_y)
print('My_accuracy: ', my_acc, ", epoch: ", epoch)
if my_acc > last_best_acc:
print('NEW BEST -- My_accuracy: ', my_acc, ", epoch: ", epoch)
last_best_acc = my_acc
best_model = copy.deepcopy(model)
torch.save(model.state_dict(), f'model_last_best_.bin')
if epoch % 15 == 0:
print('Epoch: ', epoch, step, loss)
# torch.save(model.state_dict(), f'model_epoch_{epoch}_.bin')
# inference
print('inference')
inference_result = []
for d_x, d_y in zip(dev_data_x, dev_data_y):
# pdb.set_trace()
d_x = [i.to(device) for i in d_x]
# d_y = d_y.to(device)
optimizer.zero_grad()
ypredicted = model(d_x)
top = torch.topk(ypredicted[0], 10)
top_indices = top.indices.tolist()
top_probs = top.values.tolist()
top_words = vocab.lookup_tokens(top_indices)
string_to_print = ''
sum_probs = 0
for w, p in zip(top_words, top_probs):
# print(top_words)
if '<unk>' in w:
continue
string_to_print += f"{w}:{p} "
sum_probs += p
if string_to_print == '':
inference_result.append("the:0.2 a:0.3 :0.5")
continue
unknow_prob = 1 - sum_probs
string_to_print += f":{unknow_prob}"
inference_result.append(string_to_print)
with open('dev-0/out.tsv', 'w') as f:
for line in inference_result:
f.write(line+'\n')
print('inference test')
inference_result = []
for d_x in test_set_x:
# pdb.set_trace()
d_x = [i.to(device) for i in d_x]
# d_y = d_y.to(device)
optimizer.zero_grad()
ypredicted = model(d_x)
top = torch.topk(ypredicted[0], 64)
top_indices = top.indices.tolist()
top_probs = top.values.tolist()
top_words = vocab.lookup_tokens(top_indices)
string_to_print = ''
sum_probs = 0
for w, p in zip(top_words, top_probs):
# print(top_words)
if '<unk>' in w:
continue
string_to_print += f"{w}:{p} "
sum_probs += p
if string_to_print == '':
inference_result.append("the:0.2 a:0.3 :0.5")
continue
unknow_prob = 1 - sum_probs
string_to_print += f":{unknow_prob}"
inference_result.append(string_to_print)
with open('test-A/out.tsv', 'w') as f:
for line in inference_result:
f.write(line+'\n')
print('All done')