challenging-america-word-ga.../train.py

124 lines
3.2 KiB
Python
Raw Normal View History

2023-05-09 21:44:00 +02:00
from torch import nn
import torch
from torch.utils.data import IterableDataset
import itertools
import lzma
import regex as re
import pickle
import scripts
def look_ahead_iterator(gen):
prev = None
current = None
next = None
for next in gen:
if prev is not None and current is not None:
yield (prev, current, next)
prev = current
current = next
def get_word_lines_from_file(file_name):
counter=0
with lzma.open(file_name, 'r') as fh:
for line in fh:
counter+=1
if counter == 100000:
break
line = line.decode("utf-8")
yield scripts.get_words_from_line(line)
class Trigrams(IterableDataset):
def load_vocab(self):
with open("vocab.pickle", 'rb') as handle:
vocab = pickle.load( handle)
return vocab
def __init__(self, text_file, vocabulary_size):
self.vocab = self.load_vocab()
self.vocab.set_default_index(self.vocab['<unk>'])
self.vocabulary_size = vocabulary_size
self.text_file = text_file
def __iter__(self):
return look_ahead_iterator(
(self.vocab[t] for t in itertools.chain.from_iterable(get_word_lines_from_file(self.text_file))))
vocab_size = scripts.vocab_size
train_dataset = Trigrams('train/in.tsv.xz', vocab_size)
#=== trenowanie
from torch import nn
import torch
from torch.utils.data import DataLoader
embed_size = 100
class SimpleTrigramNeuralLanguageModel(nn.Module):
def __init__(self, vocabulary_size, embedding_size):
super(SimpleTrigramNeuralLanguageModel, self).__init__()
self.embedings = nn.Embedding(vocabulary_size, embedding_size)
self.linear = nn.Linear(embedding_size*2, vocabulary_size)
self.linear_first_layer = nn.Linear(embedding_size*2, embedding_size*2)
self.relu = nn.ReLU()
self.softmax = nn.Softmax()
# self.model = nn.Sequential(
# nn.Embedding(vocabulary_size, embedding_size),
# nn.Linear(embedding_size, vocabulary_size),
# nn.Softmax()
# )
def forward(self, x):
emb_1 = self.embedings(x[0])
emb_2 = self.embedings(x[1])
first_layer = self.linear_first_layer(torch.cat((emb_1, emb_2), dim=1))
after_relu = self.relu(first_layer)
concated = self.linear(after_relu)
y = self.softmax(concated)
return y
model = SimpleTrigramNeuralLanguageModel(vocab_size, embed_size)
vocab = train_dataset.vocab
device = 'cuda'
model = SimpleTrigramNeuralLanguageModel(vocab_size, embed_size).to(device)
data = DataLoader(train_dataset, batch_size=12800)
optimizer = torch.optim.Adam(model.parameters(), lr=scripts.learning_rate)
criterion = torch.nn.NLLLoss()
model.train()
step = 0
epochs = 4
for i in range(epochs):
for x, y, z in data:
x = x.to(device)
y = y.to(device)
z = z.to(device)
optimizer.zero_grad()
ypredicted = model([x, z])
loss = criterion(torch.log(ypredicted), y)
if step % 2000 == 0:
print(step, loss)
# torch.save(model.state_dict(), f'model1_{step}.bin')
step += 1
loss.backward()
optimizer.step()
torch.save(model.state_dict(), f'batch_model_epoch_{i}.bin')
print(step, loss, f'model_epoch_{i}.bin')
torch.save(model.state_dict(), 'model_tri1.bin')