Delete 'inference.py'
This commit is contained in:
parent
d713b4a83f
commit
4b3fb1c333
107
inference.py
107
inference.py
@ -1,107 +0,0 @@
|
||||
from torch import nn
|
||||
import torch
|
||||
|
||||
|
||||
from torch.utils.data import IterableDataset
|
||||
import itertools
|
||||
import lzma
|
||||
import regex as re
|
||||
import pickle
|
||||
import scripts
|
||||
import os
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
|
||||
|
||||
class SimpleTrigramNeuralLanguageModel(nn.Module):
|
||||
def __init__(self, vocabulary_size, embedding_size):
|
||||
super(SimpleTrigramNeuralLanguageModel, self).__init__()
|
||||
self.embedings = nn.Embedding(vocabulary_size, embedding_size)
|
||||
self.linear = nn.Linear(embedding_size*2, vocabulary_size)
|
||||
|
||||
self.linear_first_layer = nn.Linear(embedding_size*2, embedding_size*2)
|
||||
self.relu = nn.ReLU()
|
||||
self.softmax = nn.Softmax()
|
||||
|
||||
# self.model = nn.Sequential(
|
||||
# nn.Embedding(vocabulary_size, embedding_size),
|
||||
# nn.Linear(embedding_size, vocabulary_size),
|
||||
# nn.Softmax()
|
||||
# )
|
||||
|
||||
def forward(self, x):
|
||||
emb_1 = self.embedings(x[0])
|
||||
emb_2 = self.embedings(x[1])
|
||||
|
||||
first_layer = self.linear_first_layer(torch.cat((emb_1, emb_2), dim=1))
|
||||
after_relu = self.relu(first_layer)
|
||||
concated = self.linear(after_relu)
|
||||
|
||||
y = self.softmax(concated)
|
||||
|
||||
return y
|
||||
|
||||
vocab_size = scripts.vocab_size
|
||||
embed_size = 100
|
||||
device = 'cuda'
|
||||
|
||||
model = SimpleTrigramNeuralLanguageModel(vocab_size, embed_size).to(device)
|
||||
|
||||
model.load_state_dict(torch.load('batch_model_epoch_0.bin'))
|
||||
model.eval()
|
||||
|
||||
with open("vocab.pickle", 'rb') as handle:
|
||||
vocab = pickle.load(handle)
|
||||
vocab.set_default_index(vocab['<unk>'])
|
||||
|
||||
|
||||
step = 0
|
||||
|
||||
|
||||
with lzma.open('dev-0/in.tsv.xz', 'rb') as file:
|
||||
for line in file:
|
||||
line = line.decode('utf-8')
|
||||
line = line.rstrip()
|
||||
# line = line.lower()
|
||||
line = line.replace("\\\\n", ' ')
|
||||
|
||||
|
||||
line_splitted = line.split('\t')[-2:]
|
||||
|
||||
prev = list(scripts.get_words_from_line(line_splitted[0]))[-1]
|
||||
next = list(scripts.get_words_from_line(line_splitted[1]))[0]
|
||||
|
||||
# prev = line[0].split(' ')[-1]
|
||||
# next = line[1].split(' ')[0]
|
||||
|
||||
|
||||
x = torch.tensor(vocab.forward([prev]))
|
||||
z = torch.tensor(vocab.forward([next]))
|
||||
x = x.to(device)
|
||||
z = z.to(device)
|
||||
ypredicted = model([x, z])
|
||||
|
||||
try:
|
||||
|
||||
top = torch.topk(ypredicted[0], 128)
|
||||
except:
|
||||
print(ypredicted[0])
|
||||
raise Exception('aa')
|
||||
top_indices = top.indices.tolist()
|
||||
top_probs = top.values.tolist()
|
||||
top_words = vocab.lookup_tokens(top_indices)
|
||||
|
||||
string_to_print = ''
|
||||
sum_probs = 0
|
||||
|
||||
for w, p in zip(top_words, top_probs):
|
||||
if '<unk>' in w:
|
||||
continue
|
||||
if re.search(r'\p{L}+', w):
|
||||
string_to_print += f"{w}:{p} "
|
||||
sum_probs += p
|
||||
if string_to_print == '':
|
||||
print(f"the:0.2 a:0.3 :0.5")
|
||||
continue
|
||||
unknow_prob = 1 - sum_probs
|
||||
string_to_print += f":{unknow_prob}"
|
||||
|
||||
print(string_to_print)
|
Loading…
Reference in New Issue
Block a user