zad 10 done
This commit is contained in:
parent
6b714b7556
commit
961dbf8b99
@ -1,30 +0,0 @@
|
||||
from itertools import islice
|
||||
import regex as re
|
||||
import sys
|
||||
from torchtext.vocab import build_vocab_from_iterator
|
||||
import lzma
|
||||
import scripts
|
||||
|
||||
|
||||
|
||||
def get_word_lines_from_file(file_name):
|
||||
counter=0
|
||||
with lzma.open(file_name, 'r') as fh:
|
||||
for line in fh:
|
||||
counter+=1
|
||||
# if counter == 10000:
|
||||
# break
|
||||
line = line.decode("utf-8")
|
||||
yield scripts.get_words_from_line(line)
|
||||
|
||||
|
||||
vocab_size = scripts.vocab_size
|
||||
|
||||
vocab = build_vocab_from_iterator(
|
||||
get_word_lines_from_file('train/in.tsv.xz'),
|
||||
max_tokens = vocab_size,
|
||||
specials = ['<unk>'])
|
||||
|
||||
import pickle
|
||||
with open("vocab.pickle", 'wb') as handle:
|
||||
pickle.dump(vocab, handle)
|
21038
dev-0/out.tsv
21038
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
104
generator.py
Normal file
104
generator.py
Normal file
@ -0,0 +1,104 @@
|
||||
import torch
|
||||
from torch import nn, optim
|
||||
from torch.utils.data import DataLoader
|
||||
import numpy as np
|
||||
from collections import Counter
|
||||
import string
|
||||
import lzma
|
||||
import pdb
|
||||
import copy
|
||||
from torch.utils.data import IterableDataset
|
||||
import itertools
|
||||
import lzma
|
||||
import regex as re
|
||||
import pickle
|
||||
import string
|
||||
import pdb
|
||||
import utils
|
||||
import os
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
||||
device = 'cuda'
|
||||
|
||||
vocab_size = utils.vocab_size
|
||||
|
||||
with open("vocab.pickle", 'rb') as handle:
|
||||
vocab = pickle.load( handle)
|
||||
vocab.set_default_index(vocab['<unk>'])
|
||||
class Model(nn.Module):
|
||||
def __init__(self, vocab_size):
|
||||
super(Model, self).__init__()
|
||||
self.lstm_size = 150
|
||||
self.embedding_dim = 200
|
||||
self.num_layers = 1
|
||||
|
||||
self.embedding = nn.Embedding(
|
||||
num_embeddings=vocab_size,
|
||||
embedding_dim=self.embedding_dim,
|
||||
)
|
||||
self.lstm = nn.LSTM(
|
||||
input_size=self.embedding_dim,
|
||||
hidden_size=self.lstm_size,
|
||||
num_layers=self.num_layers,
|
||||
batch_first=True,
|
||||
bidirectional=True,
|
||||
# dropout=0.2,
|
||||
)
|
||||
self.fc = nn.Linear(self.lstm_size*2, vocab_size)
|
||||
|
||||
def forward(self, x, prev_state = None):
|
||||
embed = self.embedding(x)
|
||||
output, state = self.lstm(embed, prev_state)
|
||||
logits = self.fc(output)
|
||||
return logits, state
|
||||
|
||||
def init_state(self, sequence_length):
|
||||
return (torch.zeros(self.num_layers*2, sequence_length, self.lstm_size).to(device),
|
||||
torch.zeros(self.num_layers*2, sequence_length, self.lstm_size).to(device))
|
||||
|
||||
|
||||
model = Model(vocab_size = vocab_size).to(device)
|
||||
|
||||
model.load_state_dict(torch.load('lstm_step_10000.bin'))
|
||||
model.eval()
|
||||
|
||||
def predict(model, text_splitted):
|
||||
model.eval()
|
||||
words = text_splitted
|
||||
|
||||
x = torch.tensor([[vocab[w] for w in words]]).to(device)
|
||||
|
||||
state_h, state_c = model.init_state(x.size()[0])
|
||||
|
||||
y_pred, (state_h, state_c) = model(x, (state_h, state_c))
|
||||
|
||||
|
||||
last_word_logits = y_pred[0][-1]
|
||||
p = torch.nn.functional.softmax(last_word_logits, dim=0)
|
||||
|
||||
top = torch.topk(p, 10)
|
||||
top_indices = top.indices.tolist()
|
||||
top_words = vocab.lookup_tokens(top_indices)
|
||||
if '<unk>' in top_words:
|
||||
top_words.remove('<unk>')
|
||||
|
||||
return np.random.choice(top_words)
|
||||
|
||||
prompts = [
|
||||
'These, and a thousand other means, by which the wealth of a nation may be greatly increase',
|
||||
'Pants, coat and vest of the latest styles, are provided. Whenever the fires need coaling,',
|
||||
'Mr. Deddrick intends to clothe it and\ngive it as nearly as possible a likeness'
|
||||
]
|
||||
for p in prompts:
|
||||
answer = ''
|
||||
for i in range(10):
|
||||
answer += predict(model, p.split()) + ' '
|
||||
print('Prompt: ', p)
|
||||
print('Answer: ', answer)
|
||||
|
||||
# Prompt: These, and a thousand other means, by which the wealth of a nation may be greatly increase
|
||||
# Answer: as the of as and to in to for in
|
||||
# Prompt: Pants, coat and vest of the latest styles, are provided. Whenever the fires need coaling,
|
||||
# Answer: in that The a the of the to the for
|
||||
# Prompt: Mr. Deddrick intends to clothe it and
|
||||
# give it as nearly as possible a likeness
|
||||
# Answer: and of\nthe for man in of\nthe and of man of
|
159
inference.py
159
inference.py
@ -1,107 +1,118 @@
|
||||
from torch import nn
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
from torch import nn, optim
|
||||
from torch.utils.data import DataLoader
|
||||
import numpy as np
|
||||
from collections import Counter
|
||||
import string
|
||||
import lzma
|
||||
import pdb
|
||||
import copy
|
||||
from torch.utils.data import IterableDataset
|
||||
import itertools
|
||||
import lzma
|
||||
import regex as re
|
||||
import pickle
|
||||
import scripts
|
||||
import string
|
||||
import pdb
|
||||
import utils
|
||||
import os
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
|
||||
|
||||
class SimpleTrigramNeuralLanguageModel(nn.Module):
|
||||
def __init__(self, vocabulary_size, embedding_size):
|
||||
super(SimpleTrigramNeuralLanguageModel, self).__init__()
|
||||
self.embedings = nn.Embedding(vocabulary_size, embedding_size)
|
||||
self.linear = nn.Linear(embedding_size*2, vocabulary_size)
|
||||
|
||||
self.linear_first_layer = nn.Linear(embedding_size*2, embedding_size*2)
|
||||
self.relu = nn.ReLU()
|
||||
self.softmax = nn.Softmax()
|
||||
|
||||
# self.model = nn.Sequential(
|
||||
# nn.Embedding(vocabulary_size, embedding_size),
|
||||
# nn.Linear(embedding_size, vocabulary_size),
|
||||
# nn.Softmax()
|
||||
# )
|
||||
|
||||
def forward(self, x):
|
||||
emb_1 = self.embedings(x[0])
|
||||
emb_2 = self.embedings(x[1])
|
||||
|
||||
first_layer = self.linear_first_layer(torch.cat((emb_1, emb_2), dim=1))
|
||||
after_relu = self.relu(first_layer)
|
||||
concated = self.linear(after_relu)
|
||||
|
||||
y = self.softmax(concated)
|
||||
|
||||
return y
|
||||
|
||||
vocab_size = scripts.vocab_size
|
||||
embed_size = 100
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
||||
device = 'cuda'
|
||||
|
||||
model = SimpleTrigramNeuralLanguageModel(vocab_size, embed_size).to(device)
|
||||
|
||||
model.load_state_dict(torch.load('batch_model_epoch_0.bin'))
|
||||
model.eval()
|
||||
vocab_size = utils.vocab_size
|
||||
|
||||
with open("vocab.pickle", 'rb') as handle:
|
||||
vocab = pickle.load(handle)
|
||||
vocab = pickle.load( handle)
|
||||
vocab.set_default_index(vocab['<unk>'])
|
||||
class Model(nn.Module):
|
||||
def __init__(self, vocab_size):
|
||||
super(Model, self).__init__()
|
||||
self.lstm_size = 150
|
||||
self.embedding_dim = 200
|
||||
self.num_layers = 1
|
||||
|
||||
self.embedding = nn.Embedding(
|
||||
num_embeddings=vocab_size,
|
||||
embedding_dim=self.embedding_dim,
|
||||
)
|
||||
self.lstm = nn.LSTM(
|
||||
input_size=self.embedding_dim,
|
||||
hidden_size=self.lstm_size,
|
||||
num_layers=self.num_layers,
|
||||
batch_first=True,
|
||||
bidirectional=True,
|
||||
# dropout=0.2,
|
||||
)
|
||||
self.fc = nn.Linear(self.lstm_size*2, vocab_size)
|
||||
|
||||
def forward(self, x, prev_state = None):
|
||||
embed = self.embedding(x)
|
||||
output, state = self.lstm(embed, prev_state)
|
||||
logits = self.fc(output)
|
||||
return logits, state
|
||||
|
||||
def init_state(self, sequence_length):
|
||||
return (torch.zeros(self.num_layers*2, sequence_length, self.lstm_size).to(device),
|
||||
torch.zeros(self.num_layers*2, sequence_length, self.lstm_size).to(device))
|
||||
|
||||
|
||||
step = 0
|
||||
model = Model(vocab_size = vocab_size).to(device)
|
||||
|
||||
model.load_state_dict(torch.load('lstm_step_10000.bin'))
|
||||
model.eval()
|
||||
def predict(model, text_splitted):
|
||||
model.eval()
|
||||
words = text_splitted
|
||||
|
||||
x = torch.tensor([[vocab[w] for w in words]]).to(device)
|
||||
|
||||
state_h, state_c = model.init_state(x.size()[0])
|
||||
|
||||
y_pred, (state_h, state_c) = model(x, (state_h, state_c))
|
||||
|
||||
|
||||
with lzma.open('dev-0/in.tsv.xz', 'rb') as file:
|
||||
for line in file:
|
||||
line = line.decode('utf-8')
|
||||
line = line.rstrip()
|
||||
# line = line.lower()
|
||||
line = line.replace("\\\\n", ' ')
|
||||
last_word_logits = y_pred[0][-1]
|
||||
p = torch.nn.functional.softmax(last_word_logits, dim=0)
|
||||
|
||||
|
||||
line_splitted = line.split('\t')[-2:]
|
||||
|
||||
prev = list(scripts.get_words_from_line(line_splitted[0]))[-1]
|
||||
next = list(scripts.get_words_from_line(line_splitted[1]))[0]
|
||||
|
||||
# prev = line[0].split(' ')[-1]
|
||||
# next = line[1].split(' ')[0]
|
||||
|
||||
|
||||
x = torch.tensor(vocab.forward([prev]))
|
||||
z = torch.tensor(vocab.forward([next]))
|
||||
x = x.to(device)
|
||||
z = z.to(device)
|
||||
ypredicted = model([x, z])
|
||||
|
||||
try:
|
||||
|
||||
top = torch.topk(ypredicted[0], 128)
|
||||
except:
|
||||
print(ypredicted[0])
|
||||
raise Exception('aa')
|
||||
top = torch.topk(p, 64)
|
||||
top_indices = top.indices.tolist()
|
||||
top_probs = top.values.tolist()
|
||||
top_words = vocab.lookup_tokens(top_indices)
|
||||
return top_words, top_probs
|
||||
|
||||
inference_result = []
|
||||
with lzma.open(f'test-A/in.tsv.xz', 'r') as file:
|
||||
for line in file:
|
||||
line = line.decode("utf-8")
|
||||
line = line.rstrip()
|
||||
line = line.translate(str.maketrans('', '', string.punctuation))
|
||||
line_splitted_by_tab = line.split('\t')
|
||||
left_context = line_splitted_by_tab[-2]
|
||||
|
||||
left_context_splitted = list(utils.get_words_from_line(left_context))
|
||||
|
||||
top_words, top_probs = predict(model, left_context_splitted)
|
||||
|
||||
string_to_print = ''
|
||||
sum_probs = 0
|
||||
|
||||
sum_probs = 0
|
||||
for w, p in zip(top_words, top_probs):
|
||||
# print(top_words)
|
||||
if '<unk>' in w:
|
||||
continue
|
||||
if re.search(r'\p{L}+', w):
|
||||
string_to_print += f"{w}:{p} "
|
||||
sum_probs += p
|
||||
|
||||
if string_to_print == '':
|
||||
print(f"the:0.2 a:0.3 :0.5")
|
||||
inference_result.append("the:0.2 a:0.3 :0.5")
|
||||
continue
|
||||
unknow_prob = 1 - sum_probs
|
||||
string_to_print += f":{unknow_prob}"
|
||||
|
||||
print(string_to_print)
|
||||
inference_result.append(string_to_print)
|
||||
|
||||
with open('test-A/out.tsv', 'w') as f:
|
||||
for line in inference_result:
|
||||
f.write(line+'\n')
|
||||
print('All done')
|
189
lstm.py
Normal file
189
lstm.py
Normal file
@ -0,0 +1,189 @@
|
||||
import torch
|
||||
from torch import nn, optim
|
||||
from torch.utils.data import DataLoader
|
||||
import numpy as np
|
||||
from collections import Counter
|
||||
import string
|
||||
import lzma
|
||||
import pdb
|
||||
import copy
|
||||
from torch.utils.data import IterableDataset
|
||||
import itertools
|
||||
import lzma
|
||||
import regex as re
|
||||
import pickle
|
||||
import string
|
||||
import pdb
|
||||
import utils
|
||||
import os
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
|
||||
device = 'cuda'
|
||||
|
||||
with open("vocab.pickle", 'rb') as handle:
|
||||
vocab = pickle.load( handle)
|
||||
vocab.set_default_index(vocab['<unk>'])
|
||||
|
||||
def get_word_lines_from_file(file_name):
|
||||
counter=0
|
||||
seq_len = 10
|
||||
with lzma.open(file_name, 'r') as fh:
|
||||
for line in fh:
|
||||
counter+=1
|
||||
# if counter == 100000:
|
||||
# break
|
||||
line = line.decode("utf-8")
|
||||
|
||||
line_splitted = utils.get_words_from_line(line)
|
||||
|
||||
vocab_line = [vocab[t] for t in line_splitted]
|
||||
|
||||
for i in range(len(vocab_line) - seq_len):
|
||||
yield torch.tensor(vocab_line[i:i+seq_len]), torch.tensor(vocab_line[i+1 :i+seq_len+1])
|
||||
|
||||
|
||||
|
||||
|
||||
class Grams_10(IterableDataset):
|
||||
|
||||
def __init__(self, text_file, vocab):
|
||||
self.vocab = vocab
|
||||
self.vocab.set_default_index(self.vocab['<unk>'])
|
||||
self.text_file = text_file
|
||||
|
||||
def __iter__(self):
|
||||
return get_word_lines_from_file(self.text_file)
|
||||
|
||||
vocab_size = utils.vocab_size
|
||||
|
||||
train_dataset = Grams_10('train/in.tsv.xz', vocab)
|
||||
|
||||
|
||||
BATCH_SIZE = 1024
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, vocab_size):
|
||||
super(Model, self).__init__()
|
||||
self.lstm_size = 150
|
||||
self.embedding_dim = 200
|
||||
self.num_layers = 1
|
||||
|
||||
self.embedding = nn.Embedding(
|
||||
num_embeddings=vocab_size,
|
||||
embedding_dim=self.embedding_dim,
|
||||
)
|
||||
self.lstm = nn.LSTM(
|
||||
input_size=self.embedding_dim,
|
||||
hidden_size=self.lstm_size,
|
||||
num_layers=self.num_layers,
|
||||
batch_first=True,
|
||||
bidirectional=True,
|
||||
# dropout=0.2,
|
||||
)
|
||||
self.fc = nn.Linear(self.lstm_size*2, vocab_size)
|
||||
|
||||
def forward(self, x, prev_state = None):
|
||||
embed = self.embedding(x)
|
||||
output, state = self.lstm(embed, prev_state)
|
||||
logits = self.fc(output)
|
||||
return logits, state
|
||||
|
||||
def init_state(self, sequence_length):
|
||||
return (torch.zeros(self.num_layers*2, sequence_length, self.lstm_size).to(device),
|
||||
torch.zeros(self.num_layers*2, sequence_length, self.lstm_size).to(device))
|
||||
|
||||
|
||||
def train(dataloader, model, max_epochs):
|
||||
model.train()
|
||||
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = optim.Adam(model.parameters(), lr=0.01)
|
||||
|
||||
for epoch in range(max_epochs):
|
||||
step = 0
|
||||
for batch_i, (x, y) in enumerate(dataloader):
|
||||
# pdb.set_trace()
|
||||
|
||||
x = x.to(device)
|
||||
y = y.to(device)
|
||||
optimizer.zero_grad()
|
||||
|
||||
y_pred, (state_h, state_c) = model(x)
|
||||
# pdb.set_trace()
|
||||
loss = criterion(y_pred.transpose(1, 2), y)
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
step+=1
|
||||
if step % 500 == 0:
|
||||
print({ 'epoch': epoch,'step': step ,'loss': loss.item(), })
|
||||
# torch.save(model.state_dict(), f'lstm_step_{step}.bin')
|
||||
if step % 5000 == 0:
|
||||
print({ 'epoch': epoch, 'step': step, 'loss': loss.item() })
|
||||
torch.save(model.state_dict(), f'lstm_step_{step}.bin')
|
||||
torch.save(model.state_dict(), f'lstm_epoch_{epoch}.bin')
|
||||
# break
|
||||
print('Halko zaczynamy trenowanie')
|
||||
model = Model(vocab_size = vocab_size).to(device)
|
||||
|
||||
dataset = DataLoader(train_dataset, batch_size=BATCH_SIZE)
|
||||
train(dataset, model, 1)
|
||||
torch.save(model.state_dict(), f'lstm.bin')
|
||||
|
||||
|
||||
# def predict(model, text_splitted):
|
||||
# model.eval()
|
||||
# words = text_splitted
|
||||
|
||||
# x = torch.tensor([[vocab[w] for w in words]]).to(device)
|
||||
# state_h, state_c = model.init_state(x.size()[0])
|
||||
|
||||
# y_pred, (state_h, state_c) = model(x, (state_h, state_c))
|
||||
|
||||
|
||||
# last_word_logits = y_pred[0][-1]
|
||||
# p = torch.nn.functional.softmax(last_word_logits, dim=0)
|
||||
|
||||
# top = torch.topk(p, 64)
|
||||
# top_indices = top.indices.tolist()
|
||||
# top_probs = top.values.tolist()
|
||||
# top_words = vocab.lookup_tokens(top_indices)
|
||||
# return top_words, top_probs
|
||||
|
||||
# print('Halko zaczynamy predykcje')
|
||||
# inference_result = []
|
||||
# with lzma.open(f'dev-0/in.tsv.xz', 'r') as file:
|
||||
# for line in file:
|
||||
# line = line.decode("utf-8")
|
||||
# line = line.rstrip()
|
||||
# line = line.translate(str.maketrans('', '', string.punctuation))
|
||||
# line_splitted_by_tab = line.split('\t')
|
||||
# left_context = line_splitted_by_tab[-2]
|
||||
|
||||
# left_context_splitted = list(utils.get_words_from_line(left_context))
|
||||
|
||||
# top_words, top_probs = predict(model, left_context_splitted)
|
||||
|
||||
# string_to_print = ''
|
||||
|
||||
# sum_probs = 0
|
||||
# for w, p in zip(top_words, top_probs):
|
||||
# # print(top_words)
|
||||
# if '<unk>' in w:
|
||||
# continue
|
||||
# string_to_print += f"{w}:{p} "
|
||||
# sum_probs += p
|
||||
|
||||
# if string_to_print == '':
|
||||
# inference_result.append("the:0.2 a:0.3 :0.5")
|
||||
# continue
|
||||
# unknow_prob = 1 - sum_probs
|
||||
# string_to_print += f":{unknow_prob}"
|
||||
|
||||
# inference_result.append(string_to_print)
|
||||
|
||||
# with open('dev-0/out.tsv', 'w') as f:
|
||||
# for line in inference_result:
|
||||
# f.write(line+'\n')
|
||||
print('All done')
|
14828
test-A/out.tsv
14828
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
124
train.py
124
train.py
@ -1,124 +0,0 @@
|
||||
|
||||
|
||||
from torch import nn
|
||||
import torch
|
||||
|
||||
|
||||
from torch.utils.data import IterableDataset
|
||||
import itertools
|
||||
import lzma
|
||||
import regex as re
|
||||
import pickle
|
||||
import scripts
|
||||
|
||||
|
||||
def look_ahead_iterator(gen):
|
||||
prev = None
|
||||
current = None
|
||||
next = None
|
||||
for next in gen:
|
||||
if prev is not None and current is not None:
|
||||
yield (prev, current, next)
|
||||
prev = current
|
||||
current = next
|
||||
|
||||
|
||||
def get_word_lines_from_file(file_name):
|
||||
counter=0
|
||||
with lzma.open(file_name, 'r') as fh:
|
||||
for line in fh:
|
||||
counter+=1
|
||||
if counter == 100000:
|
||||
break
|
||||
line = line.decode("utf-8")
|
||||
yield scripts.get_words_from_line(line)
|
||||
|
||||
|
||||
|
||||
class Trigrams(IterableDataset):
|
||||
def load_vocab(self):
|
||||
with open("vocab.pickle", 'rb') as handle:
|
||||
vocab = pickle.load( handle)
|
||||
return vocab
|
||||
|
||||
def __init__(self, text_file, vocabulary_size):
|
||||
self.vocab = self.load_vocab()
|
||||
self.vocab.set_default_index(self.vocab['<unk>'])
|
||||
self.vocabulary_size = vocabulary_size
|
||||
self.text_file = text_file
|
||||
|
||||
def __iter__(self):
|
||||
return look_ahead_iterator(
|
||||
(self.vocab[t] for t in itertools.chain.from_iterable(get_word_lines_from_file(self.text_file))))
|
||||
|
||||
vocab_size = scripts.vocab_size
|
||||
|
||||
train_dataset = Trigrams('train/in.tsv.xz', vocab_size)
|
||||
|
||||
|
||||
|
||||
#=== trenowanie
|
||||
from torch import nn
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
embed_size = 100
|
||||
|
||||
class SimpleTrigramNeuralLanguageModel(nn.Module):
|
||||
def __init__(self, vocabulary_size, embedding_size):
|
||||
super(SimpleTrigramNeuralLanguageModel, self).__init__()
|
||||
self.embedings = nn.Embedding(vocabulary_size, embedding_size)
|
||||
self.linear = nn.Linear(embedding_size*2, vocabulary_size)
|
||||
|
||||
self.linear_first_layer = nn.Linear(embedding_size*2, embedding_size*2)
|
||||
self.relu = nn.ReLU()
|
||||
self.softmax = nn.Softmax()
|
||||
|
||||
# self.model = nn.Sequential(
|
||||
# nn.Embedding(vocabulary_size, embedding_size),
|
||||
# nn.Linear(embedding_size, vocabulary_size),
|
||||
# nn.Softmax()
|
||||
# )
|
||||
|
||||
def forward(self, x):
|
||||
emb_1 = self.embedings(x[0])
|
||||
emb_2 = self.embedings(x[1])
|
||||
|
||||
first_layer = self.linear_first_layer(torch.cat((emb_1, emb_2), dim=1))
|
||||
after_relu = self.relu(first_layer)
|
||||
concated = self.linear(after_relu)
|
||||
|
||||
y = self.softmax(concated)
|
||||
|
||||
return y
|
||||
|
||||
model = SimpleTrigramNeuralLanguageModel(vocab_size, embed_size)
|
||||
|
||||
vocab = train_dataset.vocab
|
||||
|
||||
|
||||
device = 'cuda'
|
||||
model = SimpleTrigramNeuralLanguageModel(vocab_size, embed_size).to(device)
|
||||
data = DataLoader(train_dataset, batch_size=12800)
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=scripts.learning_rate)
|
||||
criterion = torch.nn.NLLLoss()
|
||||
|
||||
model.train()
|
||||
step = 0
|
||||
epochs = 4
|
||||
for i in range(epochs):
|
||||
for x, y, z in data:
|
||||
x = x.to(device)
|
||||
y = y.to(device)
|
||||
z = z.to(device)
|
||||
optimizer.zero_grad()
|
||||
ypredicted = model([x, z])
|
||||
loss = criterion(torch.log(ypredicted), y)
|
||||
if step % 2000 == 0:
|
||||
print(step, loss)
|
||||
# torch.save(model.state_dict(), f'model1_{step}.bin')
|
||||
step += 1
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
torch.save(model.state_dict(), f'batch_model_epoch_{i}.bin')
|
||||
print(step, loss, f'model_epoch_{i}.bin')
|
||||
torch.save(model.state_dict(), 'model_tri1.bin')
|
25
utils.py
Normal file
25
utils.py
Normal file
@ -0,0 +1,25 @@
|
||||
import regex as re
|
||||
import string
|
||||
from torch import nn
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from torch.utils.data import IterableDataset
|
||||
import itertools
|
||||
import lzma
|
||||
import regex as re
|
||||
import pickle
|
||||
import string
|
||||
|
||||
|
||||
def get_words_from_line(line):
|
||||
line = line.rstrip()
|
||||
line = line.strip()
|
||||
# yield '<s>'
|
||||
for m in line.split():
|
||||
yield m
|
||||
# yield '</s>'
|
||||
|
||||
vocab_size = 20000
|
||||
device = 'cuda'
|
||||
|
348
x_train.py
348
x_train.py
@ -1,348 +0,0 @@
|
||||
from torch import nn
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
import copy
|
||||
from torch.utils.data import IterableDataset
|
||||
import itertools
|
||||
import lzma
|
||||
import regex as re
|
||||
import pickle
|
||||
import scripts
|
||||
import string
|
||||
import pdb
|
||||
import utils
|
||||
|
||||
def divide_chunks(l, n):
|
||||
|
||||
# looping till length l
|
||||
for i in range(0, len(l), n):
|
||||
yield l[i:i + n]
|
||||
|
||||
|
||||
with open("vocab.pickle", 'rb') as handle:
|
||||
vocab = pickle.load( handle)
|
||||
vocab.set_default_index(vocab['<unk>'])
|
||||
|
||||
|
||||
|
||||
def look_ahead_iterator(gen):
|
||||
seq = []
|
||||
counter = 0
|
||||
for item in gen:
|
||||
seq.append(item)
|
||||
if counter % 11 == 0 and counter !=0:
|
||||
if len(seq) == 11:
|
||||
yield seq
|
||||
seq = []
|
||||
counter+=1
|
||||
|
||||
def get_word_lines_from_file(file_name):
|
||||
counter=0
|
||||
with lzma.open(file_name, 'r') as fh:
|
||||
for line in fh:
|
||||
counter+=1
|
||||
# if counter == 100000:
|
||||
# break
|
||||
line = line.decode("utf-8")
|
||||
yield scripts.get_words_from_line(line)
|
||||
|
||||
|
||||
|
||||
class Grams_10(IterableDataset):
|
||||
def load_vocab(self):
|
||||
with open("vocab.pickle", 'rb') as handle:
|
||||
vocab = pickle.load( handle)
|
||||
return vocab
|
||||
|
||||
def __init__(self, text_file, vocab):
|
||||
self.vocab = vocab
|
||||
self.vocab.set_default_index(self.vocab['<unk>'])
|
||||
self.text_file = text_file
|
||||
|
||||
def __iter__(self):
|
||||
return look_ahead_iterator(
|
||||
(self.vocab[t] for t in itertools.chain.from_iterable(get_word_lines_from_file(self.text_file))))
|
||||
|
||||
vocab_size = scripts.vocab_size
|
||||
|
||||
train_dataset = Grams_10('train/in.tsv.xz', vocab)
|
||||
BATCH_SIZE = 2048
|
||||
|
||||
train_data = DataLoader(train_dataset, batch_size=BATCH_SIZE)
|
||||
|
||||
|
||||
PREFIX_TRAIN = 'train'
|
||||
PREFIX_VALID = 'dev-0'
|
||||
BATCHES = []
|
||||
# def read_train_file(folder_prefix, vocab):
|
||||
# dataset_x = []
|
||||
# dataset_y = []
|
||||
# counter_lines = 0
|
||||
# seq_len = 10
|
||||
# with lzma.open(f'{folder_prefix}/in.tsv.xz', 'r') as train, open(f'{folder_prefix}/expected.tsv', 'r') as expected:
|
||||
# for t_line, e_line in zip(train, expected):
|
||||
# t_line = t_line.decode("utf-8")
|
||||
# t_line = t_line.rstrip()
|
||||
# e_line = e_line.rstrip()
|
||||
# t_line = t_line.translate(str.maketrans('', '', string.punctuation))
|
||||
# t_line_splitted_by_tab = t_line.split('\t')
|
||||
# # t_line_cleared = t_line_splitted_by_tab[-2] + ' ' + e_line + ' ' + t_line_splitted_by_tab[-1]
|
||||
|
||||
|
||||
# whole_line = t_line_splitted_by_tab[-2] + ' ' + e_line + ' ' + t_line_splitted_by_tab[-1]
|
||||
|
||||
# whole_line_splitted = list(scripts.get_words_from_line(whole_line))
|
||||
|
||||
# whole_lines_splitted = divide_chunks(whole_line_splitted, 11)
|
||||
|
||||
# for chunk_line in whole_line_splitted:
|
||||
|
||||
|
||||
# left_context_splitted = chunk_line[0:10]
|
||||
|
||||
# seq_x = []
|
||||
# for i in range(seq_len):
|
||||
# index = -1 - i
|
||||
# if len(left_context_splitted) < i + 1:
|
||||
# seq_x.insert(0, '<empty>')
|
||||
# else:
|
||||
# seq_x.insert(0, left_context_splitted[-1 -i])
|
||||
|
||||
# left_vocabed = [vocab[t] for t in seq_x]
|
||||
|
||||
|
||||
# dataset_x.append(left_vocabed )
|
||||
# dataset_y.append([vocab[chunk_line[10]]])
|
||||
|
||||
# counter_lines+=1
|
||||
# # if counter_lines > 20000:
|
||||
# # break
|
||||
# return dataset_x, dataset_y
|
||||
|
||||
def read_dev_file(folder_prefix, vocab):
|
||||
dataset_x = []
|
||||
dataset_y = []
|
||||
counter_lines = 0
|
||||
seq_len = 10
|
||||
with lzma.open(f'{folder_prefix}/in.tsv.xz', 'r') as train, open(f'{folder_prefix}/expected.tsv', 'r') as expected:
|
||||
for t_line, e_line in zip(train, expected):
|
||||
t_line = t_line.decode("utf-8")
|
||||
t_line = t_line.rstrip()
|
||||
e_line = e_line.rstrip()
|
||||
t_line = t_line.translate(str.maketrans('', '', string.punctuation))
|
||||
t_line_splitted_by_tab = t_line.split('\t')
|
||||
# t_line_cleared = t_line_splitted_by_tab[-2] + ' ' + e_line + ' ' + t_line_splitted_by_tab[-1]
|
||||
|
||||
left_context = t_line_splitted_by_tab[-2]
|
||||
left_context_splitted = list(scripts.get_words_from_line(left_context))
|
||||
|
||||
|
||||
seq_x = []
|
||||
for i in range(seq_len):
|
||||
index = -1 - i
|
||||
if len(left_context_splitted) < i + 1:
|
||||
seq_x.insert(0, '<empty>')
|
||||
else:
|
||||
seq_x.insert(0, left_context_splitted[-1 -i])
|
||||
|
||||
left_vocabed = [vocab[t] for t in seq_x]
|
||||
|
||||
|
||||
dataset_x.append(left_vocabed )
|
||||
dataset_y.append([vocab[e_line]])
|
||||
|
||||
counter_lines+=1
|
||||
# if counter_lines > 20000:
|
||||
# break
|
||||
return dataset_x, dataset_y
|
||||
|
||||
def read_test_file(folder_prefix, vocab):
|
||||
dataset_x = []
|
||||
dataset_y = []
|
||||
counter_lines = 0
|
||||
seq_len = 10
|
||||
with lzma.open(f'{folder_prefix}/in.tsv.xz', 'r') as train:
|
||||
for t_line in train:
|
||||
t_line = t_line.decode("utf-8")
|
||||
t_line = t_line.rstrip()
|
||||
t_line = t_line.translate(str.maketrans('', '', string.punctuation))
|
||||
t_line_splitted_by_tab = t_line.split('\t')
|
||||
# t_line_cleared = t_line_splitted_by_tab[-2] + ' ' + e_line + ' ' + t_line_splitted_by_tab[-1]
|
||||
|
||||
left_context = t_line_splitted_by_tab[-2]
|
||||
left_context_splitted = list(scripts.get_words_from_line(left_context))
|
||||
|
||||
|
||||
seq_x = []
|
||||
for i in range(seq_len):
|
||||
index = -1 - i
|
||||
if len(left_context_splitted) < i + 1:
|
||||
seq_x.insert(0, '<empty>')
|
||||
else:
|
||||
seq_x.insert(0, left_context_splitted[-1 -i])
|
||||
|
||||
left_vocabed = [vocab[t] for t in seq_x]
|
||||
|
||||
|
||||
dataset_x.append(left_vocabed )
|
||||
|
||||
counter_lines+=1
|
||||
# if counter_lines > 20000:
|
||||
# break
|
||||
return dataset_x
|
||||
|
||||
|
||||
|
||||
# train_set_x, train_set_y = read_file(PREFIX_TRAIN, vocab)
|
||||
dev_set_x, dev_set_y = read_dev_file(PREFIX_VALID, vocab)
|
||||
|
||||
test_set_x = read_test_file('test-A', vocab)
|
||||
|
||||
# train_data_x = DataLoader(train_set_x, batch_size=4048)
|
||||
# train_data_y = DataLoader(train_set_y, batch_size=4048)
|
||||
|
||||
# train_data_x = DataLoader(train_set_x, batch_size=4048)
|
||||
# train_data_y = DataLoader(train_set_y, batch_size=4048)
|
||||
|
||||
|
||||
dev_data_x = DataLoader(dev_set_x, batch_size=1)
|
||||
dev_data_y = DataLoader(dev_set_y, batch_size=1)
|
||||
|
||||
|
||||
|
||||
test_set_x = DataLoader(test_set_x, batch_size=1)
|
||||
# pdb.set_trace()
|
||||
device = utils.device
|
||||
|
||||
model = utils.LanguageModel(scripts.vocab_size, utils.embed_size).to(device)
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=utils.learning_rate)
|
||||
criterion = torch.nn.NLLLoss()
|
||||
model.train()
|
||||
|
||||
step = 0
|
||||
last_best_acc = -1
|
||||
epochs = 3
|
||||
for epoch in range(epochs):
|
||||
model.train()
|
||||
for batch in train_data:
|
||||
x = batch[:10]
|
||||
y = [batch[10]]
|
||||
|
||||
x = [i.to(device) for i in x]
|
||||
y = y[0].to(device)
|
||||
optimizer.zero_grad()
|
||||
ypredicted = model(x)
|
||||
# pdb.set_trace()
|
||||
loss = criterion(torch.log(ypredicted), y)
|
||||
if step % 10000 == 0:
|
||||
print('Step: ', step, loss)
|
||||
# torch.save(model.state_dict(), f'model1_{step}.bin')
|
||||
step += 1
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
# evaluation
|
||||
model.eval()
|
||||
y_predeicted = []
|
||||
top_50_true = 0
|
||||
for d_x, d_y in zip(dev_data_x, dev_data_y):
|
||||
# pdb.set_trace()
|
||||
d_x = [i.to(device) for i in d_x]
|
||||
# d_y = d_y.to(device)
|
||||
|
||||
optimizer.zero_grad()
|
||||
ypredicted = model(d_x)
|
||||
|
||||
top = torch.topk(ypredicted[0], 64)
|
||||
top_indices = top.indices.tolist()
|
||||
if d_y[0] in top_indices:
|
||||
top_50_true+=1
|
||||
my_acc = top_50_true/len(dev_data_y)
|
||||
print('My_accuracy: ', my_acc, ", epoch: ", epoch)
|
||||
if my_acc > last_best_acc:
|
||||
print('NEW BEST -- My_accuracy: ', my_acc, ", epoch: ", epoch)
|
||||
last_best_acc = my_acc
|
||||
best_model = copy.deepcopy(model)
|
||||
torch.save(model.state_dict(), f'model_last_best_.bin')
|
||||
if epoch % 15 == 0:
|
||||
print('Epoch: ', epoch, step, loss)
|
||||
# torch.save(model.state_dict(), f'model_epoch_{epoch}_.bin')
|
||||
|
||||
|
||||
|
||||
# inference
|
||||
print('inference')
|
||||
inference_result = []
|
||||
for d_x, d_y in zip(dev_data_x, dev_data_y):
|
||||
# pdb.set_trace()
|
||||
d_x = [i.to(device) for i in d_x]
|
||||
# d_y = d_y.to(device)
|
||||
|
||||
optimizer.zero_grad()
|
||||
ypredicted = model(d_x)
|
||||
|
||||
top = torch.topk(ypredicted[0], 10)
|
||||
top_indices = top.indices.tolist()
|
||||
top_probs = top.values.tolist()
|
||||
top_words = vocab.lookup_tokens(top_indices)
|
||||
|
||||
string_to_print = ''
|
||||
|
||||
sum_probs = 0
|
||||
for w, p in zip(top_words, top_probs):
|
||||
# print(top_words)
|
||||
if '<unk>' in w:
|
||||
continue
|
||||
string_to_print += f"{w}:{p} "
|
||||
sum_probs += p
|
||||
|
||||
if string_to_print == '':
|
||||
inference_result.append("the:0.2 a:0.3 :0.5")
|
||||
continue
|
||||
unknow_prob = 1 - sum_probs
|
||||
string_to_print += f":{unknow_prob}"
|
||||
|
||||
inference_result.append(string_to_print)
|
||||
|
||||
with open('dev-0/out.tsv', 'w') as f:
|
||||
for line in inference_result:
|
||||
f.write(line+'\n')
|
||||
|
||||
|
||||
print('inference test')
|
||||
inference_result = []
|
||||
for d_x in test_set_x:
|
||||
# pdb.set_trace()
|
||||
d_x = [i.to(device) for i in d_x]
|
||||
# d_y = d_y.to(device)
|
||||
|
||||
optimizer.zero_grad()
|
||||
ypredicted = model(d_x)
|
||||
|
||||
top = torch.topk(ypredicted[0], 64)
|
||||
top_indices = top.indices.tolist()
|
||||
top_probs = top.values.tolist()
|
||||
top_words = vocab.lookup_tokens(top_indices)
|
||||
|
||||
string_to_print = ''
|
||||
|
||||
sum_probs = 0
|
||||
for w, p in zip(top_words, top_probs):
|
||||
# print(top_words)
|
||||
if '<unk>' in w:
|
||||
continue
|
||||
string_to_print += f"{w}:{p} "
|
||||
sum_probs += p
|
||||
|
||||
if string_to_print == '':
|
||||
inference_result.append("the:0.2 a:0.3 :0.5")
|
||||
continue
|
||||
unknow_prob = 1 - sum_probs
|
||||
string_to_print += f":{unknow_prob}"
|
||||
|
||||
inference_result.append(string_to_print)
|
||||
|
||||
with open('test-A/out.tsv', 'w') as f:
|
||||
for line in inference_result:
|
||||
f.write(line+'\n')
|
||||
print('All done')
|
Loading…
Reference in New Issue
Block a user