trzymam kciuki za dobry wynik

This commit is contained in:
Mikołaj Pokrywka 2023-04-13 21:33:24 +02:00
parent 9abd651db6
commit b647907ce4
4 changed files with 18083 additions and 11963 deletions

File diff suppressed because it is too large Load Diff

View File

@ -8,46 +8,77 @@ from itertools import islice
import json
import pdb
model_v = "4000"
model_v = "1"
PREFIX_VALID = 'test-A'
probabilities = {}
with open(f'model_{model_v}.tsv', 'r') as f:
prob_4gram = {}
with open(f'4_gram_model_{model_v}.tsv', 'r') as f:
for line in f:
line = line.rstrip()
splitted_line = line.split('\t')
probabilities[tuple(splitted_line[:4])] = (float(splitted_line[4]), float(splitted_line[5]))
prob_4gram[tuple(splitted_line[:3])] = json.loads(splitted_line[-1])
prob_3gram = {}
# with open(f'3_gram_model_{model_v}.tsv', 'r') as f:
# for line in f:
# line = line.rstrip()
# splitted_line = line.split('\t')
# prob_3gram[tuple(splitted_line[:2])] = json.loads(splitted_line[-1])
prob_2gram = {}
# with open(f'2_gram_model_{model_v}.tsv', 'r') as f:
# for line in f:
# line = line.rstrip()
# splitted_line = line.split('\t')
# prob_2gram[tuple(splitted_line[0])] = json.loads(splitted_line[-1])
vocab = set()
with open(f"vocab_{model_v}.txt", 'r') as f:
for l in f:
vocab.add(l.rstrip())
def count_probabilities(_probabilities, _chunk_left, _chunk_right):
# probabilities_bi = {}
# with open(f'bigram_big_unk_20', 'r') as f:
for index, (l, r) in enumerate(zip( _chunk_left, _chunk_right)):
# for line in f:
# line = line.rstrip()
# splitted_line = line.split('\t')
# probabilities_bi[tuple(splitted_line[:2])] = (float(splitted_line[2]), float(splitted_line[3]))
def count_probabilities(prob_4gram_x, prob_3gram_x, prob_2gram_x, _chunk_left, _chunk_right):
for index, (l, r) in enumerate(zip(_chunk_left, _chunk_right)):
if l not in vocab:
_chunk_left[index] = "<UNK>"
if r not in vocab:
_chunk_right[index] = "<UNK>"
_chunk_left = tuple(_chunk_left)
_chunk_right = tuple(_chunk_right)
results_left = {}
best_ = {}
for tetragram, probses in _probabilities.items():
if tetragram[-1] == "<UNK>":
return best_
hyps_4 = prob_4gram_x.get(_chunk_left)
if len(results_left) > 2:
break
if list(tetragram[:3]) == _chunk_left:
# for tetragram_2, probses_2 in _probabilities.items():
# if list(tetragram_2[1:]) == _chunk_right:
# best_[tetragram[-1]] = probses[0] * probses_2[1]
# if _chunk_left not in prob_3gram_x:
# return {}
# hyps_3 = prob_3gram_x.get(_chunk_left)
# if _chunk_left not in prob_2gram_x:
# return {}
# hyps_2 = prob_2gram_x.get(_chunk_left)
if hyps_4 is None:
return {}
items = hyps_4.items()
if tetragram[-1] not in best_:
best_[tetragram[-1]] = probses[0] * 0.7
items = best_.items()
return OrderedDict(sorted(items, key=lambda t:t[1], reverse=True))
@ -59,6 +90,8 @@ with lzma.open(f'{PREFIX_VALID}/in.tsv.xz', 'r') as train:
t_line = t_line.rstrip()
t_line = t_line.lower()
t_line = t_line.replace("\\\\n", ' ')
t_line_splitted_by_tab = t_line.split('\t')
@ -72,7 +105,7 @@ with lzma.open(f'{PREFIX_VALID}/in.tsv.xz', 'r') as train:
chunk_left = words_before[-3:]
chunk_right = words_after[0:3]
probs_ordered = count_probabilities(probabilities, chunk_left, chunk_right)
probs_ordered = count_probabilities(prob_4gram, prob_3gram, prob_2gram, chunk_left, chunk_right)
# if len(probs_ordered) !=0:
# print(probs_ordered)
@ -82,12 +115,18 @@ with lzma.open(f'{PREFIX_VALID}/in.tsv.xz', 'r') as train:
continue
result_string = ''
counter_ = 0
p_sum = 0
for word_, p in probs_ordered.items():
if counter_>4:
if counter_>30:
break
re_ = re.search(r'\p{L}+', word_)
if re_:
word_cleared = re_.group(0)
p = p*0.9
p_sum += p
result_string += f"{word_cleared}:{str(p)} "
else:
if result_string == '':
@ -95,6 +134,7 @@ with lzma.open(f'{PREFIX_VALID}/in.tsv.xz', 'r') as train:
continue
counter_+=1
result_string += ':0.2'
res = 1 - p_sum
result_string += f':{res}'
print(result_string)
a=1

File diff suppressed because it is too large Load Diff

108
train.py
View File

@ -7,8 +7,8 @@ import regex as re
from itertools import islice
import json
import tqdm
ignore_rare = 4000
model_v = '4000'
ignore_rare = 15000 #7500 perpex511.51 9000 perpex=505 15000 perpex503
model_v = '1'
def freq_list(g, top=None):
@ -56,6 +56,7 @@ with lzma.open(f'{PREFIX_TRAIN}/in.tsv.xz', 'r') as train, open(f'{PREFIX_TRAIN}
t_line_cleared = t_line_cleared.lower()
t_line_cleared = t_line_cleared.replace("\\\\n", ' ')
words += re.findall(r'\p{L}+', t_line_cleared)
@ -67,7 +68,7 @@ with lzma.open(f'{PREFIX_TRAIN}/in.tsv.xz', 'r') as train, open(f'{PREFIX_TRAIN}
print(counter_lines)
counter_lines+=1
if counter_lines > 70000: # 50000 12gb ram
if counter_lines > 130000: # 50000 12gb ram
break
words_c = Counter(words)
@ -78,34 +79,97 @@ with open(f'vocab_{model_v}.txt', 'w') as f:
continue
f.write(word + '\n')
with open(f'vocab_{model_v}.txt', 'w') as f:
for word, amount in words_c.items():
if amount < ignore_rare:
continue
f.write(word + '\n')
def create_model(grams4, trigrams):
model = {}
for gram4, amount4 in grams4.items():
trigram = gram4[:-1]
last_word = gram4[-1]
if last_word == "<UNK>":
continue
probibility = amount4 / trigrams[trigram]
if trigram in model:
model[trigram][last_word] = probibility
continue
model[trigram] = {last_word: probibility}
return model
def create_bigram_model(bigram_x, word_c_x):
model = {}
for gram4, amount4 in bigram_x.items():
word_key = gram4[0]
last_word = gram4[1]
if last_word == "<UNK>" or word_key=="<UNK>":
continue
try:
probibility = amount4 / word_c_x[word_key]
except:
print(gram4)
print(word_key)
print(last_word)
raise Exception
if word_key in model:
model[word_key][last_word] = probibility
continue
model[word_key] = {last_word: probibility}
return model
trigrams_ = ngrams(words, 3, words_c)
tetragrams_ = ngrams(words, 4, words_c)
trigram_c = Counter(trigrams_)
trigrams_ = ''
tetragrams_c = Counter(tetragrams_)
tetragrams_ = ''
model = create_model(tetragrams_c, trigram_c)
def create_probabilities_bigrams(trigrams, tetragrams):
probabilities_grams = {}
for tetragram, gram_amount in tetragrams.items():
# if bigram_amount <=2:
# continue
p_word_right = gram_amount / trigrams[tetragram[:-1]]
p_word_left = gram_amount / trigrams[tetragram[1:]]
probabilities_grams[tetragram] = (str(p_word_right), str(p_word_left))
return probabilities_grams
with open(f'4_gram_model_{model_v}.tsv', 'w') as f:
for trigram, hyps in model.items():
f.write("\t".join(trigram) + "\t" + json.dumps(hyps) + '\n')
# ========= Trigram
model=""
trigrams_ = ngrams(words, 3, words_c)
bigrams_ = ngrams(words, 2, words_c)
trigram_c = Counter(trigrams_)
word_=''
tetragrams_ = Counter(tetragrams_)
probabilities = create_probabilities_bigrams(trigram_c, tetragrams_)
trigrams_ = ''
bigram_c = Counter(bigrams_)
bigrams_ = ''
model = create_model(trigram_c, bigram_c)
trigram_c = ""
with open(f'3_gram_model_{model_v}.tsv', 'w') as f:
for trigram, hyps in model.items():
f.write("\t".join(trigram) + "\t" + json.dumps(hyps) + '\n')
model = ""
# ========= Bigram
items = probabilities.items()
probabilities = OrderedDict(sorted(items, key=lambda t:t[1], reverse=True))
items=''
model=""
bigrams_ = ngrams(words, 2, words_c)
bigram_c = Counter(bigrams_)
bigrams_ = ''
model = create_bigram_model(bigram_c, words_c)
with open(f'model_{model_v}.tsv', 'w') as f:
for tetragram, left_right_p in probabilities.items():
f.write("\t".join(tetragram) + "\t" + "\t".join(left_right_p) + '\n')
with open(f'2_gram_model_{model_v}.tsv', 'w') as f:
for trigram, hyps in model.items():
f.write(trigram + "\t" + json.dumps(hyps) + '\n')
model = ""