From d713b4a83f81746d8852dcccbb78c80c26f375c0 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Miko=C5=82aj=20Pokrywka?= Date: Wed, 31 May 2023 20:30:56 +0200 Subject: [PATCH] Delete 'train.py' --- train.py | 124 ------------------------------------------------------- 1 file changed, 124 deletions(-) delete mode 100644 train.py diff --git a/train.py b/train.py deleted file mode 100644 index 5a923b5..0000000 --- a/train.py +++ /dev/null @@ -1,124 +0,0 @@ - - -from torch import nn -import torch - - -from torch.utils.data import IterableDataset -import itertools -import lzma -import regex as re -import pickle -import scripts - - -def look_ahead_iterator(gen): - prev = None - current = None - next = None - for next in gen: - if prev is not None and current is not None: - yield (prev, current, next) - prev = current - current = next - - -def get_word_lines_from_file(file_name): - counter=0 - with lzma.open(file_name, 'r') as fh: - for line in fh: - counter+=1 - if counter == 100000: - break - line = line.decode("utf-8") - yield scripts.get_words_from_line(line) - - - -class Trigrams(IterableDataset): - def load_vocab(self): - with open("vocab.pickle", 'rb') as handle: - vocab = pickle.load( handle) - return vocab - - def __init__(self, text_file, vocabulary_size): - self.vocab = self.load_vocab() - self.vocab.set_default_index(self.vocab['']) - self.vocabulary_size = vocabulary_size - self.text_file = text_file - - def __iter__(self): - return look_ahead_iterator( - (self.vocab[t] for t in itertools.chain.from_iterable(get_word_lines_from_file(self.text_file)))) - -vocab_size = scripts.vocab_size - -train_dataset = Trigrams('train/in.tsv.xz', vocab_size) - - - -#=== trenowanie -from torch import nn -import torch -from torch.utils.data import DataLoader -embed_size = 100 - -class SimpleTrigramNeuralLanguageModel(nn.Module): - def __init__(self, vocabulary_size, embedding_size): - super(SimpleTrigramNeuralLanguageModel, self).__init__() - self.embedings = nn.Embedding(vocabulary_size, embedding_size) - self.linear = nn.Linear(embedding_size*2, vocabulary_size) - - self.linear_first_layer = nn.Linear(embedding_size*2, embedding_size*2) - self.relu = nn.ReLU() - self.softmax = nn.Softmax() - - # self.model = nn.Sequential( - # nn.Embedding(vocabulary_size, embedding_size), - # nn.Linear(embedding_size, vocabulary_size), - # nn.Softmax() - # ) - - def forward(self, x): - emb_1 = self.embedings(x[0]) - emb_2 = self.embedings(x[1]) - - first_layer = self.linear_first_layer(torch.cat((emb_1, emb_2), dim=1)) - after_relu = self.relu(first_layer) - concated = self.linear(after_relu) - - y = self.softmax(concated) - - return y - -model = SimpleTrigramNeuralLanguageModel(vocab_size, embed_size) - -vocab = train_dataset.vocab - - -device = 'cuda' -model = SimpleTrigramNeuralLanguageModel(vocab_size, embed_size).to(device) -data = DataLoader(train_dataset, batch_size=12800) -optimizer = torch.optim.Adam(model.parameters(), lr=scripts.learning_rate) -criterion = torch.nn.NLLLoss() - -model.train() -step = 0 -epochs = 4 -for i in range(epochs): - for x, y, z in data: - x = x.to(device) - y = y.to(device) - z = z.to(device) - optimizer.zero_grad() - ypredicted = model([x, z]) - loss = criterion(torch.log(ypredicted), y) - if step % 2000 == 0: - print(step, loss) - # torch.save(model.state_dict(), f'model1_{step}.bin') - step += 1 - loss.backward() - optimizer.step() - torch.save(model.state_dict(), f'batch_model_epoch_{i}.bin') - print(step, loss, f'model_epoch_{i}.bin') -torch.save(model.state_dict(), 'model_tri1.bin') \ No newline at end of file