Compare commits
4 Commits
Author | SHA1 | Date | |
---|---|---|---|
b78ff29559 | |||
c3b03af282 | |||
eb10e5db4a | |||
|
c0894d950a |
21038
dev-0/out.tsv
21038
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
60
hf.py
Normal file
60
hf.py
Normal file
@ -0,0 +1,60 @@
|
|||||||
|
import torch
|
||||||
|
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AutoModelForCausalLM
|
||||||
|
import sys
|
||||||
|
import regex as re
|
||||||
|
|
||||||
|
import pdb
|
||||||
|
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
||||||
|
model = AutoModelForCausalLM.from_pretrained('gpt2').to('cuda')
|
||||||
|
|
||||||
|
a = ['I took part in many conferences and competitions at the \t and international']
|
||||||
|
for line in sys.stdin:
|
||||||
|
# for line in a:
|
||||||
|
input_text = line.split('\t')[-2].rstrip()
|
||||||
|
right_context = line.split('\t')[-1].rstrip()
|
||||||
|
input_ids = tokenizer.encode(input_text, return_tensors='pt').to('cuda')
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
outputs = model(input_ids)
|
||||||
|
|
||||||
|
|
||||||
|
token_logits = outputs.logits[:, -1, : ]
|
||||||
|
probs = torch.nn.functional.softmax(token_logits, dim=1)[0]
|
||||||
|
|
||||||
|
top = torch.topk(probs, 4)
|
||||||
|
|
||||||
|
top_indices = top.indices.tolist()
|
||||||
|
top_probs = top.values.tolist()
|
||||||
|
top_words = [tokenizer.decode(x) for x in top_indices]
|
||||||
|
# pdb.set_trace()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
right_encoded = tokenizer.encode(right_context, return_tensors='pt').to('cuda')
|
||||||
|
first_word = right_encoded[0][0].unsqueeze(0).unsqueeze(0)
|
||||||
|
second_word = right_encoded[0][1]
|
||||||
|
|
||||||
|
string_to_print = ''
|
||||||
|
sum_probs = 0
|
||||||
|
for p, w_i, w in zip(top_probs, top_indices, top_words):
|
||||||
|
if re.search(r'\p{L}+', w):
|
||||||
|
# pdb.set_trace()
|
||||||
|
buff = torch.tensor([w_i]).unsqueeze(0).to('cuda')
|
||||||
|
input_ids = torch.cat((buff, first_word), dim=-1)
|
||||||
|
with torch.no_grad():
|
||||||
|
outputs = model(input_ids)
|
||||||
|
|
||||||
|
token_logits = outputs.logits[:, -1, : ]
|
||||||
|
|
||||||
|
probs = torch.nn.functional.softmax(token_logits, dim=1)[0]
|
||||||
|
|
||||||
|
new_probs = (p + probs[second_word]) * 0.5
|
||||||
|
string_to_print += f"{w}:{new_probs} "
|
||||||
|
sum_probs += new_probs
|
||||||
|
|
||||||
|
|
||||||
|
unknow_prob = 1 - sum_probs
|
||||||
|
string_to_print += f":{unknow_prob}"
|
||||||
|
string_to_print = re.sub(' +', ' ', string_to_print)
|
||||||
|
print(string_to_print.rstrip().strip())
|
||||||
|
|
153
run.py
153
run.py
@ -1,153 +0,0 @@
|
|||||||
import lzma
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
from math import log
|
|
||||||
from collections import OrderedDict
|
|
||||||
from collections import Counter
|
|
||||||
import regex as re
|
|
||||||
from itertools import islice
|
|
||||||
|
|
||||||
def freq_list(g, top=None):
|
|
||||||
c = Counter(g)
|
|
||||||
|
|
||||||
if top is None:
|
|
||||||
items = c.items()
|
|
||||||
else:
|
|
||||||
items = c.most_common(top)
|
|
||||||
|
|
||||||
return OrderedDict(sorted(items, key=lambda t: -t[1]))
|
|
||||||
|
|
||||||
def get_words(t):
|
|
||||||
for m in re.finditer(r'[\p{L}0-9-\*]+', t):
|
|
||||||
yield m.group(0)
|
|
||||||
|
|
||||||
def ngrams(iter, size):
|
|
||||||
ngram = []
|
|
||||||
for item in iter:
|
|
||||||
ngram.append(item)
|
|
||||||
if len(ngram) == size:
|
|
||||||
yield tuple(ngram)
|
|
||||||
ngram = ngram[1:]
|
|
||||||
|
|
||||||
PREFIX_TRAIN = 'train'
|
|
||||||
words = []
|
|
||||||
|
|
||||||
counter_lines = 0
|
|
||||||
with lzma.open(f'{PREFIX_TRAIN}/in.tsv.xz', 'r') as train, open(f'{PREFIX_TRAIN}/expected.tsv', 'r') as expected:
|
|
||||||
for t_line, e_line in zip(train, expected):
|
|
||||||
t_line = t_line.decode("utf-8")
|
|
||||||
|
|
||||||
t_line = t_line.rstrip()
|
|
||||||
e_line = e_line.rstrip()
|
|
||||||
|
|
||||||
t_line_splitted_by_tab = t_line.split('\t')
|
|
||||||
|
|
||||||
t_line_cleared = t_line_splitted_by_tab[-2] + ' ' + e_line + ' ' + t_line_splitted_by_tab[-1]
|
|
||||||
|
|
||||||
words += t_line_cleared.split()
|
|
||||||
|
|
||||||
counter_lines+=1
|
|
||||||
if counter_lines > 90000:
|
|
||||||
break
|
|
||||||
|
|
||||||
# lzmaFile = lzma.open('dev-0/in.tsv.xz', 'rb')
|
|
||||||
|
|
||||||
# content = lzmaFile.read().decode("utf-8")
|
|
||||||
# words = get_words(trainset)
|
|
||||||
|
|
||||||
ngrams_ = ngrams(words, 2)
|
|
||||||
|
|
||||||
|
|
||||||
def create_probabilities_bigrams(w_c, b_c):
|
|
||||||
probabilities_bigrams = {}
|
|
||||||
for bigram, bigram_amount in b_c.items():
|
|
||||||
if bigram_amount <=2:
|
|
||||||
continue
|
|
||||||
p_word_before = bigram_amount / w_c[bigram[0]]
|
|
||||||
p_word_after = bigram_amount / w_c[bigram[1]]
|
|
||||||
probabilities_bigrams[bigram] = (p_word_before, p_word_after)
|
|
||||||
|
|
||||||
return probabilities_bigrams
|
|
||||||
|
|
||||||
words_c = Counter(words)
|
|
||||||
word_=''
|
|
||||||
bigram_c = Counter(ngrams_)
|
|
||||||
ngrams_=''
|
|
||||||
probabilities = create_probabilities_bigrams(words_c, bigram_c)
|
|
||||||
|
|
||||||
|
|
||||||
items = probabilities.items()
|
|
||||||
probabilities = OrderedDict(sorted(items, key=lambda t:t[1], reverse=True))
|
|
||||||
items=''
|
|
||||||
# sorted_by_freq = freq_list(ngrams)
|
|
||||||
|
|
||||||
PREFIX_VALID = 'test-A'
|
|
||||||
|
|
||||||
def count_probabilities(w_b, w_a, probs, w_c, b_c):
|
|
||||||
results_before = {}
|
|
||||||
results_after = {}
|
|
||||||
for bigram, probses in probs.items():
|
|
||||||
if len(results_before) > 20 or len(results_after) > 20:
|
|
||||||
break
|
|
||||||
if w_b == bigram[0]:
|
|
||||||
results_before[bigram] = probses[0]
|
|
||||||
if w_a == bigram[1]:
|
|
||||||
results_after[bigram] = probses[1]
|
|
||||||
a=1
|
|
||||||
best_ = {}
|
|
||||||
|
|
||||||
for bigram, probses in results_before.items():
|
|
||||||
for bigram_2, probses_2 in results_after.items():
|
|
||||||
best_[bigram[1]] = probses * probses_2
|
|
||||||
|
|
||||||
for bigram, probses in results_after.items():
|
|
||||||
for bigram_2, probses_2 in results_before.items():
|
|
||||||
if bigram[0] in best_:
|
|
||||||
if probses * probses_2 < probses_2:
|
|
||||||
continue
|
|
||||||
best_[bigram[0]] = probses * probses_2
|
|
||||||
|
|
||||||
items = best_.items()
|
|
||||||
return OrderedDict(sorted(items, key=lambda t:t[1], reverse=True))
|
|
||||||
|
|
||||||
|
|
||||||
with lzma.open(f'{PREFIX_VALID}/in.tsv.xz', 'r') as train:
|
|
||||||
for t_line in train:
|
|
||||||
t_line = t_line.decode("utf-8")
|
|
||||||
|
|
||||||
t_line = t_line.rstrip()
|
|
||||||
t_line = t_line.replace('\\n', ' ')
|
|
||||||
|
|
||||||
|
|
||||||
t_line_splitted_by_tab = t_line.split('\t')
|
|
||||||
|
|
||||||
|
|
||||||
words_pre = t_line_splitted_by_tab[-2].split()
|
|
||||||
|
|
||||||
words_po = t_line_splitted_by_tab[-1].split()
|
|
||||||
|
|
||||||
w_pre = words_pre[-1]
|
|
||||||
w_po = words_po[0]
|
|
||||||
|
|
||||||
probs_ordered = count_probabilities(w_pre, w_po,probabilities, words_c, bigram_c)
|
|
||||||
if len(probs_ordered) ==0:
|
|
||||||
print(f"the:0.5 a:0.3 :0.2")
|
|
||||||
continue
|
|
||||||
result_string = ''
|
|
||||||
counter_ = 0
|
|
||||||
for word_, p in probs_ordered.items():
|
|
||||||
if counter_>4:
|
|
||||||
break
|
|
||||||
re_ = re.search(r'\p{L}+', word_)
|
|
||||||
if re_:
|
|
||||||
word_cleared = re_.group(0)
|
|
||||||
result_string += f"{word_cleared}:{str(p)} "
|
|
||||||
|
|
||||||
else:
|
|
||||||
if result_string == '':
|
|
||||||
result_string = f"the:0.5 a:0.3 "
|
|
||||||
continue
|
|
||||||
|
|
||||||
counter_+=1
|
|
||||||
result_string += ':0.1'
|
|
||||||
print(result_string)
|
|
||||||
a=1
|
|
14828
test-A/out.tsv
14828
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
11
wyjasnienie.txt
Normal file
11
wyjasnienie.txt
Normal file
@ -0,0 +1,11 @@
|
|||||||
|
Na podstawie prawdopodobieństw top 4 słów wygenerowanych z lewego kontekstu. Kolejno tworzę prompt składający się z przewidywanego słowa + następnego słowa.
|
||||||
|
|
||||||
|
X - prawdopodobieństwo słowa wygenerowanego na podstawie lewego kontekstu
|
||||||
|
|
||||||
|
Y - słowo występujące po słowie X
|
||||||
|
|
||||||
|
Z - słowo występujące po słowie Y
|
||||||
|
|
||||||
|
finalne prawdopodobieństwo słowa liczę na podstawie wzoru poniżej:
|
||||||
|
|
||||||
|
(prawdopodobieństwo X na podstawie lewego kontekstu * prawdopodobieństwo słowa Z na podstawie X i Y) * 0.5
|
Loading…
Reference in New Issue
Block a user