157 lines
4.5 KiB
Python
157 lines
4.5 KiB
Python
|
import transformers
|
||
|
|
||
|
from datasets import Dataset
|
||
|
import pdb
|
||
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
def gen_train():
|
||
|
|
||
|
with open('dev-A/in.tsv', 'r') as in_file, open('dev-A/expected.tsv') as exp_file:
|
||
|
for line_1, line_2 in zip(in_file, exp_file):
|
||
|
line_1 = line_1.rstrip()
|
||
|
line_1_splitted_by_tab = line_1.split('\t')
|
||
|
text = line_1_splitted_by_tab[-1]
|
||
|
|
||
|
|
||
|
y_text = line_2.rstrip()
|
||
|
|
||
|
yield {'x': text, 'y': y_text}
|
||
|
|
||
|
train_dataset = Dataset.from_generator(gen_train)
|
||
|
|
||
|
|
||
|
model_id="google/flan-t5-base"
|
||
|
|
||
|
# Load tokenizer of FLAN-t5-base
|
||
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||
|
|
||
|
def preprocess_function(sample,padding="max_length"):
|
||
|
|
||
|
max_source_length = 100
|
||
|
max_target_length = 100
|
||
|
|
||
|
# add prefix to the input for t5
|
||
|
inputs = [item for item in sample['x']]
|
||
|
|
||
|
# tokenize inputs
|
||
|
model_inputs = tokenizer(inputs, max_length=max_source_length, padding=padding, truncation=True)
|
||
|
|
||
|
# Tokenize targets with the `text_target` keyword argument
|
||
|
labels = tokenizer(text_target=sample["y"], max_length=max_target_length, padding=padding, truncation=True)
|
||
|
|
||
|
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
|
||
|
# padding in the loss.
|
||
|
if padding == "max_length":
|
||
|
labels["input_ids"] = [
|
||
|
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
|
||
|
]
|
||
|
|
||
|
model_inputs["labels"] = labels["input_ids"]
|
||
|
return model_inputs
|
||
|
|
||
|
tokenized_dataset = train_dataset.map(preprocess_function, batched=True, remove_columns=["x", "y"])
|
||
|
# print(f"Keys of tokenized dataset: {list(tokenized_dataset.features)}")
|
||
|
|
||
|
from transformers import AutoModelForSeq2SeqLM
|
||
|
|
||
|
# huggingface hub model id
|
||
|
model_id="google/flan-t5-base"
|
||
|
|
||
|
# load model from the hub
|
||
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
|
||
|
|
||
|
|
||
|
import evaluate
|
||
|
import nltk
|
||
|
import numpy as np
|
||
|
from nltk.tokenize import sent_tokenize
|
||
|
nltk.download("punkt")
|
||
|
|
||
|
# Metric
|
||
|
metric = evaluate.load("rouge")
|
||
|
|
||
|
# helper function to postprocess text
|
||
|
def postprocess_text(preds, labels):
|
||
|
preds = [pred.strip() for pred in preds]
|
||
|
labels = [label.strip() for label in labels]
|
||
|
|
||
|
# rougeLSum expects newline after each sentence
|
||
|
preds = ["\n".join(sent_tokenize(pred)) for pred in preds]
|
||
|
labels = ["\n".join(sent_tokenize(label)) for label in labels]
|
||
|
|
||
|
return preds, labels
|
||
|
|
||
|
def compute_metrics(eval_preds):
|
||
|
preds, labels = eval_preds
|
||
|
if isinstance(preds, tuple):
|
||
|
preds = preds[0]
|
||
|
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
|
||
|
# Replace -100 in the labels as we can't decode them.
|
||
|
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
||
|
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
|
||
|
|
||
|
# Some simple post-processing
|
||
|
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
|
||
|
|
||
|
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
|
||
|
result = {k: round(v * 100, 4) for k, v in result.items()}
|
||
|
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
|
||
|
result["gen_len"] = np.mean(prediction_lens)
|
||
|
return result
|
||
|
|
||
|
|
||
|
|
||
|
from transformers import DataCollatorForSeq2Seq
|
||
|
|
||
|
# we want to ignore tokenizer pad token in the loss
|
||
|
label_pad_token_id = -100
|
||
|
# Data collator
|
||
|
data_collator = DataCollatorForSeq2Seq(
|
||
|
tokenizer,
|
||
|
model=model,
|
||
|
label_pad_token_id=label_pad_token_id,
|
||
|
pad_to_multiple_of=8
|
||
|
)
|
||
|
|
||
|
from huggingface_hub import HfFolder
|
||
|
from transformers import Seq2SeqTrainer, Seq2SeqTrainingArguments
|
||
|
|
||
|
# Hugging Face repository id
|
||
|
|
||
|
# Define training args
|
||
|
training_args = Seq2SeqTrainingArguments(
|
||
|
output_dir='model',
|
||
|
per_device_train_batch_size=8,
|
||
|
per_device_eval_batch_size=8,
|
||
|
predict_with_generate=True,
|
||
|
fp16=False, # Overflows with fp16
|
||
|
learning_rate=5e-5,
|
||
|
num_train_epochs=5,
|
||
|
# logging & evaluation strategies
|
||
|
logging_strategy="steps",
|
||
|
logging_steps=500,
|
||
|
evaluation_strategy="epoch",
|
||
|
save_strategy="epoch",
|
||
|
save_total_limit=2,
|
||
|
load_best_model_at_end=True,
|
||
|
# metric_for_best_model="overall_f1",
|
||
|
# push to hub parameters
|
||
|
)
|
||
|
|
||
|
# Create Trainer instance
|
||
|
trainer = Seq2SeqTrainer(
|
||
|
model=model,
|
||
|
args=training_args,
|
||
|
data_collator=data_collator,
|
||
|
train_dataset=tokenized_dataset,
|
||
|
eval_dataset=tokenized_dataset,
|
||
|
compute_metrics=compute_metrics,
|
||
|
)
|
||
|
# Start training
|
||
|
trainer.train()
|