ium_444463/download_data_and_process.py

30 lines
798 B
Python
Raw Normal View History

2022-04-02 14:15:19 +02:00
import subprocess
import pandas as pd
import numpy as np
import subprocess
rc = subprocess.call("./process_data.sh")
2022-04-03 18:47:33 +02:00
# import kaggle
2022-04-03 14:01:27 +02:00
2022-04-03 18:47:33 +02:00
# kaggle.api.authenticate()
# kaggle.api.dataset_download_files('shivamb/real-or-fake-fake-jobposting-prediction', path='fake_job_postings.csv', unzip=True)
2022-04-03 16:00:01 +02:00
2022-04-03 18:47:33 +02:00
data=pd.read_csv('fake_job_postings.csv')
2022-04-02 14:15:19 +02:00
data = data.replace(np.nan, '', regex=True)
print("="*20)
print('Ilość wierszy w zbiorze: ',len(data))
print("="*10, ' data["department"].value_counts() ', 10*'=')
print(data["department"].value_counts())
print("="*10, ' data.median() ', 10*'=')
print(data.median())
print("="*10, ' data.describe(include="all") ', 10*'=')
2022-04-03 12:05:23 +02:00
print(data.describe(include='all'))
data.describe(include="all").to_csv(r'stats.txt', header=None, index=None, sep='\t', mode='a')