2022-04-03 12:17:21 +02:00
|
|
|
import subprocess
|
|
|
|
import pandas as pd
|
|
|
|
import numpy as np
|
2022-04-03 12:52:57 +02:00
|
|
|
import os
|
2022-04-03 12:17:21 +02:00
|
|
|
|
2022-04-03 12:52:57 +02:00
|
|
|
|
|
|
|
path = ''
|
|
|
|
|
|
|
|
all_files = ['column_titles.csv', 'data_train.csv', 'data_dev.csv', 'data_test.csv']
|
|
|
|
|
|
|
|
data_file = open("data.csv", "w")
|
|
|
|
for name in all_files:
|
|
|
|
f = open(name, "r")
|
|
|
|
data_file.write(f.read())
|
|
|
|
f.close()
|
|
|
|
|
|
|
|
data_file.close()
|
|
|
|
data=pd.read_csv('data.csv')
|
2022-04-03 12:17:21 +02:00
|
|
|
data = data.replace(np.nan, '', regex=True)
|
|
|
|
|
|
|
|
print("="*20)
|
|
|
|
print('Ilość wierszy w zbiorze: ',len(data))
|
|
|
|
|
|
|
|
print("="*10, ' data["department"].value_counts() ', 10*'=')
|
|
|
|
print(data["department"].value_counts())
|
|
|
|
|
|
|
|
print("="*10, ' data.median() ', 10*'=')
|
|
|
|
print(data.median())
|
|
|
|
|
|
|
|
print("="*10, ' data.describe(include="all") ', 10*'=')
|
|
|
|
print(data.describe(include='all'))
|
|
|
|
|
|
|
|
data.describe(include="all").to_csv(r'stats.txt', header=None, index=None, sep='\t', mode='a')
|