model 50 epochs

This commit is contained in:
Mikołaj Pokrywka 2022-04-23 17:02:26 +02:00
parent d36302317c
commit b167cca6a4
3 changed files with 3079 additions and 12 deletions

3
.gitignore vendored
View File

@ -7,4 +7,5 @@ data_train.csv
data.csv
data_not_shuf.csv
data_not_cutted.csv
venv
venv
.~lock.fake_job_postings.csv#

78
main.py
View File

@ -10,20 +10,29 @@ from torch import nn
from torch import optim
import matplotlib.pyplot as plt
def convert_text_to_model_form(text):
a = vectorizer.transform([text])
b = torch.tensor(scipy.sparse.csr_matrix.todense(a)).float()
return b
if __name__ == "__main__":
# kaggle.api.authenticate()
# kaggle.api.dataset_download_files('shivamb/real-or-fake-fake-jobposting-prediction', path='.',
# unzip=True)
kaggle.api.authenticate()
kaggle.api.dataset_download_files('shivamb/real-or-fake-fake-jobposting-prediction', path='.',
unzip=True)
data = pd.read_csv('fake_job_postings.csv', engine='python')
data = data.replace(np.nan, '', regex=True)
# data = data.replace(np.nan, '', regex=True)
data = data[["company_profile", "fraudulent"]]
data = data.dropna()
data_train, data_test = train_test_split(data, test_size=3000, random_state=1)
data_dev, data_test = train_test_split(data_test, test_size=1500, random_state=1)
x_train = data_train["title"]
x_dev = data_dev["title"]
x_test = data_test["title"]
x_train = data_train["company_profile"]
x_dev = data_dev["company_profile"]
x_test = data_test["company_profile"]
y_train = data_train["fraudulent"]
y_dev = data_dev["fraudulent"]
@ -31,27 +40,32 @@ if __name__ == "__main__":
x_train = np.array(x_train)
x_dev = np.array(x_dev)
x_test = np.array(x_test)
y_train = np.array(y_train)
y_dev = np.array(y_dev)
y_test = np.array(y_test)
vectorizer = TfidfVectorizer()
x_train = vectorizer.fit_transform(x_train)
x_dev = vectorizer.transform(x_dev)
x_test = vectorizer.transform(x_test)
x_train = torch.tensor(scipy.sparse.csr_matrix.todense(x_train)).float()
x_dev = torch.tensor(scipy.sparse.csr_matrix.todense(x_dev)).float()
x_test = torch.tensor(scipy.sparse.csr_matrix.todense(x_test)).float()
y_train = torch.tensor(y_train)
y_dev = torch.tensor(y_dev)
y_test = torch.tensor(y_test)
from torch import nn
model = nn.Sequential(
nn.Linear(x_train.shape[1], 64),
nn.ReLU(),
nn.Linear(64, data_train["title"].nunique()),
nn.Linear(64, data_train["fraudulent"].nunique()),
nn.LogSoftmax(dim=1))
# Define the loss
@ -65,7 +79,7 @@ if __name__ == "__main__":
test_losses = []
test_accuracies = []
epochs = 5
epochs = 50
for e in range(epochs):
optimizer.zero_grad()
@ -97,6 +111,50 @@ if __name__ == "__main__":
f"Test Loss: {test_loss:.3f}.. ",
f"Test Accuracy: {test_accuracy:.3f}")
TP = []
TF = []
FP = []
FN = []
log_ps = model(x_test)
ps = torch.exp(log_ps)
top_p, top_class = ps.topk(1, dim=1)
descr = np.array(data_test["company_profile"])
for i, (x, y) in enumerate(zip(np.array(top_class), np.array(y_test.view(*top_class.shape)))):
d = descr[i]
if x == y:
if x:
TP.append(d)
else:
TF.append(d)
else:
if x:
FP.append(d)
else:
FN.append(d)
f_score = len(TP) / (len(TP) + 0.5 * (len(FP) + len(FN)))
f = open("model_resutls.txt", "a")
f.write(f"F-SCORE = {f_score}\n")
f.write(f"TP = {len(TP)}\n")
f.write(f"TF = {len(TF)}\n")
f.write(f"FP = {len(FP)}\n")
f.write(f"FN = {len(FN)}\n")
f.write(f"TP descriptions:")
for i in TP:
f.write(i+'\n')
f.write(f"TF descriptions:")
for i in TF:
f.write(i+"\n")
f.write(f"FP descriptions:")
for i in FP:
f.write(i+"\n")
f.write(f"FN descriptions:")
for i in FN:
f.write(i+"\n")
f.close()
plt.figure(figsize=(12, 5))
ax = plt.subplot(121)
plt.xlabel('epochs')
@ -109,5 +167,3 @@ if __name__ == "__main__":
plt.ylabel('test accuracy')
plt.plot(test_accuracies)
plt.show()
print('Succes')

3010
model_resutls.txt Normal file

File diff suppressed because it is too large Load Diff