r
This commit is contained in:
parent
584f945656
commit
d45ca7b820
21
Dockerfile
21
Dockerfile
@ -1,22 +1,29 @@
|
||||
FROM ubuntu:latest
|
||||
FROM python:3.8
|
||||
RUN apt update
|
||||
|
||||
|
||||
# Stwórzmy w kontenerze (jeśli nie istnieje) katalog /app i przejdźmy do niego (wszystkie kolejne polecenia RUN, CMD, ENTRYPOINT, COPY i ADD będą w nim wykonywane)
|
||||
WORKDIR /app
|
||||
COPY ./requirements.txt .
|
||||
RUN apt-get update
|
||||
RUN apt-get install -y python3-pip
|
||||
RUN pip3 install --upgrade pip
|
||||
RUN pip3 install -r ./requirements.txt
|
||||
RUN pip3 install kaggle
|
||||
|
||||
ARG CUTOFF
|
||||
ARG KAGGLE_USERNAME
|
||||
ARG KAGGLE_KEY
|
||||
ENV CUTOFF=${CUTOFF}
|
||||
ENV KAGGLE_USERNAME=${KAGGLE_USERNAME}
|
||||
ENV KAGGLE_KEY=${KAGGLE_KEY}
|
||||
# Skopiujmy nasz skrypt do katalogu /app w kontenerze
|
||||
COPY ./process_data.sh ./
|
||||
COPY ./download_data_and_process.py ./
|
||||
COPY ./stats.py ./
|
||||
|
||||
RUN ./process_data.sh
|
||||
# Skopiujmy nasz skrypt do katalogu /app w kontenerze
|
||||
RUN mkdir /data
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY ./process_data.sh .
|
||||
COPY ./download_data_and_process.py .
|
||||
COPY ./stats.py .
|
||||
|
||||
# RUN ./process_data.sh
|
||||
|
2
Jenkinsfile
vendored
2
Jenkinsfile
vendored
@ -34,7 +34,7 @@ pipeline {
|
||||
withEnv(["KAGGLE_USERNAME=${params.KAGGLE_USERNAME}",
|
||||
"KAGGLE_KEY=${params.KAGGLE_KEY}",
|
||||
"CUTOFF=${params.CUTOFF}"]) {
|
||||
// sh './process_data.sh'
|
||||
sh './process_data.sh'
|
||||
sh 'ls'
|
||||
sh 'wc data_train.csv'
|
||||
sh 'cat column_titles.csv'
|
||||
|
@ -1,17 +1,17 @@
|
||||
import subprocess
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
# import kaggle
|
||||
import kaggle
|
||||
|
||||
# kaggle.api.authenticate()
|
||||
# kaggle.api.dataset_download_files('shivamb/real-or-fake-fake-jobposting-prediction', path='fake_job_postings.csv', unzip=True)
|
||||
kaggle.api.authenticate()
|
||||
kaggle.api.dataset_download_files('shivamb/real-or-fake-fake-jobposting-prediction', path='fake_job_postings.csv', unzip=True)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
data=pd.read_csv('data.csv')
|
||||
data=pd.read_csv('fake_job_postings.csv/fake_job_postings.csv')
|
||||
data = data.replace(np.nan, '', regex=True)
|
||||
|
||||
print("="*20)
|
||||
|
@ -4,6 +4,11 @@ echo $KAGGLE_USERNAME
|
||||
kaggle datasets download -d shivamb/real-or-fake-fake-jobposting-prediction
|
||||
unzip -o real-or-fake-fake-jobposting-prediction.zip
|
||||
ls
|
||||
wc fake_job_postings.csv
|
||||
cp fake_job_postings.csv /data/fake_job_postings.csv
|
||||
cd data
|
||||
ls
|
||||
wc fake_job_postings.csv
|
||||
echo "Save column titles"
|
||||
head -n 1 fake_job_postings.csv > column_titles.csv
|
||||
tail -n +2 fake_job_postings.csv > data_not_shuf.csv
|
||||
|
Loading…
Reference in New Issue
Block a user