import pandas as pd import numpy as np import scipy import torch import pandas as pd from sklearn.model_selection import train_test_split # import kaggle from sklearn.feature_extraction.text import TfidfVectorizer from torch import nn from torch import optim import matplotlib.pyplot as plt import sys from sacred import Experiment from sacred.observers import FileStorageObserver ex = Experiment() ex.observers.append(FileStorageObserver('my_runs')) vectorizer = TfidfVectorizer() @ex.config def my_config(): epochs = 10 def convert_text_to_model_form(text): a = vectorizer.transform([text]) b = torch.tensor(scipy.sparse.csr_matrix.todense(a)).float() return b @ex.automain def my_main(epochs, _run): # print(sys.argv[1]) # print(type(sys.argv[1])) # print(sys.argv[1]) # epochs = int(sys.argv[1]) # epochs=10 # kaggle.api.authenticate() # kaggle.api.dataset_download_files('shivamb/real-or-fake-fake-jobposting-prediction', path='.', # unzip=True) data = pd.read_csv('fake_job_postings.csv', engine='python') # data = data.replace(np.nan, '', regex=True) data = data[["company_profile", "fraudulent"]] data = data.dropna() company_profile = data["company_profile"] # data_train, data_test = train_test_split(data, test_size=3000, random_state=1) # data_dev, data_test = train_test_split(data_test, test_size=1500, random_state=1) data_train = pd.read_csv('data_train.csv', engine='python', header=None).dropna() data_dev = pd.read_csv('data_dev.csv', engine='python', header=None).dropna() data_test = pd.read_csv('data_test.csv', engine='python', header=None).dropna() x_train = data_train[5] x_dev = data_dev[5] x_test = data_test[5] y_train = data_train[17] y_dev = data_dev[17] y_test = data_test[17] company_profile = np.array(company_profile) x_train = np.array(x_train) x_dev = np.array(x_dev) x_test = np.array(x_test) y_train = np.array(y_train) y_dev = np.array(y_dev) y_test = np.array(y_test) company_profile = vectorizer.fit_transform(company_profile) x_train = vectorizer.transform(x_train) x_dev = vectorizer.transform(x_dev) x_test = vectorizer.transform(x_test) x_train = torch.tensor(scipy.sparse.csr_matrix.todense(x_train)).float() x_dev = torch.tensor(scipy.sparse.csr_matrix.todense(x_dev)).float() x_test = torch.tensor(scipy.sparse.csr_matrix.todense(x_test)).float() y_train = torch.tensor(y_train) y_dev = torch.tensor(y_dev) y_test = torch.tensor(y_test) from torch import nn model = nn.Sequential( nn.Linear(x_train.shape[1], 64), nn.ReLU(), nn.Linear(64, data_train[17].nunique()), nn.LogSoftmax(dim=1)) # Define the loss criterion = nn.NLLLoss() # Forward pass, log logps = model(x_train) # Calculate the loss with the logits and the labels loss = criterion(logps, y_train) loss.backward() # Optimizers need parameters to optimize and a learning rate optimizer = optim.Adam(model.parameters(), lr=0.002) train_losses = [] test_losses = [] test_accuracies = [] for e in range(epochs): optimizer.zero_grad() output = model.forward(x_train) loss = criterion(output, y_train) loss.backward() train_loss = loss.item() train_losses.append(train_loss) optimizer.step() # Turn off gradients for validation, saves memory and computations with torch.no_grad(): model.eval() log_ps = model(x_dev) test_loss = criterion(log_ps, y_dev) test_losses.append(test_loss) ps = torch.exp(log_ps) top_p, top_class = ps.topk(1, dim=1) equals = top_class == y_dev.view(*top_class.shape) test_accuracy = torch.mean(equals.float()) test_accuracies.append(test_accuracy) model.train() print(f"Epoch: {e + 1}/{epochs}.. ", f"Training Loss: {train_loss:.3f}.. ", f"Test Loss: {test_loss:.3f}.. ", f"Test Accuracy: {test_accuracy:.3f}") TP = [] TF = [] FP = [] FN = [] model.eval() print(x_test.size()) log_ps = model(x_test) ps = torch.exp(log_ps) top_p, top_class = ps.topk(1, dim=1) descr = np.array(data_test[5]) for i, (x, y) in enumerate(zip(np.array(top_class), np.array(y_test.view(*top_class.shape)))): d = descr[i] if x == y: if x: TP.append(d) else: TF.append(d) else: if x: FP.append(d) else: FN.append(d) f_score = len(TP) / (len(TP) + 0.5 * (len(FP) + len(FN))) print(f"F- score = {f_score}") f = open("model_resutls.txt", "a") f.write(f"F-SCORE = {f_score}\n") f.write(f"TP = {len(TP)}\n") f.write(f"TF = {len(TF)}\n") f.write(f"FP = {len(FP)}\n") f.write(f"FN = {len(FN)}\n") f.write(f"TP descriptions:") for i in TP: f.write(i+'\n') f.write(f"TF descriptions:") for i in TF: f.write(i+"\n") f.write(f"FP descriptions:") for i in FP: f.write(i+"\n") f.write(f"FN descriptions:") for i in FN: f.write(i+"\n") f.close() torch.save(model, 'model') ex.add_artifact("model") # plt.figure(figsize=(12, 5)) # ax = plt.subplot(121) # plt.xlabel('epochs') # plt.ylabel('negative log likelihood loss') # plt.plot(train_losses, label='Training loss') # plt.plot(test_losses, label='Validation loss') # plt.legend(frameon=False) # plt.subplot(122) # plt.xlabel('epochs') # plt.ylabel('test accuracy') # plt.plot(test_accuracies) # plt.show()