import numpy as np import json import mlflow import sys model = 'mlruns/1/70439eb482b54d56b54b0ecc6f1ca96f/artifacts/s444409' model = mlflow.pyfunc.load_model(model) example = sys.argv[1] data_p = np.array([example['inputs'][0]], dtype=np.float32) print(10*'=' + 'PREDICTIONS' + 10*'=') print({model.predict(data_p)})